ÍNDICE

Contenido	Página
1. RESUMEN	1
2. INTRODUCCIÓN	2
3. REVISIÓN BIBLIOGRÁFICA	3
3.1 Sepsis y sus complicaciones trombóticas	3
3.2 Fisiología de las plaquetas	5
3.3 Rol de las plaquetas en inflamación e inmunidad durante la sepsis	7
3.4 Receptores Tipo Toll (TLRs)	13
3.5 Agentes antiplaquetarios	17
3.5.1 Berries y acción anti-trombótica	17
4. OBJETIVOS	20
4.1 Objetivo General	20
4.2 Objetivos Específicos	20
5. MATERIALES Y MÉTODOS	21
5.1 Reactivos	21
5 2 Obtención de Plasma Rico en Plaquetas y Pobre en Plaquetas	22

5.3 Obtención de Plaquetas Lavadas	23
5.4 Agregación plaquetaria	24
5.6 Análisis estadístico	25
6. RESULTADOS	27
6.1 Estandarización de la técnica de agregación plaquetaria	27
6.2 Efecto antiagregante de agentes antiplaquetarios	34
6.3 Estudio de viabilidad celular	38
6.4 Efecto antiagregante de extractos de Berries	41
6.5 Efecto antiagregante de compuestos bioactivos de Berri	ies 56
7. DISCUSIÓN	78
8. CONCLUSIÓN	82
9. REFERENCIAS	85

ÍNDICE DE FIGURAS

Figura 1. Contribución de las plaquetas a la complicación de la sepsis	4
Figura 2. Participación de las plaquetas en la hemostasia	6
Figura 3. Las plaquetas como reguladores inmunes durante la sepsis	10
Figura 4. TLRs potencialmente ligados a la inmunidad innata	14
Figura 5. Mecanismos de la activación plaquetaria vía TLR2	16
Figura 6. Agregación plaquetaria utilizando PRP y Pam3CSK4	28
Figura 7. Agregación plaquetaria utilizando PL y Pam3CSK4	29
Figura 8. Curva de concentración de Pam3CSK4	31
Figura 9. Obtención de extractos	32
Figura 10. Estandarización de la técnica de agregación plaquetaria	33
Figura 11. Inhibición plaquetaria mediada por BAY 11-7085	35
Figura 12. Inhibición plaquetaria mediada por AAS	36
Figura 13. Comparación de BAY 11-7085 y AAS	37
Figura 14. Estudio de viabilidad celular por el uso de extractos	39
Figura 15. Estudio de viabilidad celular por el uso de compuestos	40
Figura 16. Efecto inhibidor de Solanum lycopersicum	41
Figura 17. Efecto inhibidor concentración-dependiente de Solanum lycopersicum	43
Figura 18. Efecto inhibidor de Vaccinium spp. var. duke	45

Figura 19. Efecto inhibidor concentración dependiente de Vaccinium spp. var. duke	46
Figura 20. Efecto inhibidor de Vaccinium spp. var. o'neal	48
Figura 21. Efecto inhibidor concentración-dependiente de Vaccinium spp. var. o'neal	49
Figura 22. Efecto inhibidor de Berberis microphyla	51
Figura 23. Efecto inhibidor concentración-dependiente de Berberis microphyla	52
Figura 24. Efecto inhibidor de Fragaria ananassa	54
Figura 25. Efecto inhibidor concentración-dependiente de Fragaria ananassa	55
Figura 26. Efecto inhibidor de ácido cafeico	57
Figura 27. Efecto inhibidor concentración-dependiente de ácido cafeico	58
Figura 28. Efecto inhibidor de ácido ferúlico	60
Figura 29 Efecto inhibidor concentración-dependiente de ácido ferúlico	61
Figura 30. Efecto inhibidor de ácido <i>p</i> -cumárico	63
Figura 31. Efecto inhibidor concentración-dependiente de ácido <i>p</i> -cumárico	64
Figura 32. Efecto inhibidor de adenosina	66
Figura 33. Efecto inhibidor concentración-dependiente de adenosina	67
Figura 34. Efecto inhibidor de inosina	69
Figura 35. Efecto inhibidor concentración-dependiente de inosina	70
Figura 36. Efecto inhibidor de guanosina	72
Figura 37. Efecto inhibidor concentración-dependiente de guanosina	73

Figura 38. Efecto inhibidor de AMP	75
Figura 39. Efecto inhibidor concentración-dependiente de AMP	76

ÍNDICE DE TABLAS

Tabla 1. Moléculas plaquetarias que no poseen función hemostática	8
Tabla 2. Efecto agregante utilizando PRP y Pam3CSK4 (10 μg/mL)	28
Tabla 3. Efecto agregante utilizando PL y Pam3CSK4 (10 μg/mL)	30
Tabla 4. Efecto agregante a distintas concentraciones de Pam3CSK4	31
Tabla 5. Efecto agregante de PL utilizando Pam3CSK4 (10 μg/mL),	33
estandarización de la técnica	
Tabla 6. Efecto inhibidor de BAY 11-7085 dependiente de concentración	35
Tabla 7. Efecto inhibidor de ácido acetilsalicílico dependiente de concentración	37
Tabla 8. Efecto inhibidor de AAS y BAY 11-7085	38
Tabla 9. Efecto inhibidor de Solanum lycopersicum	42
Tabla 10. Efecto inhibidor concentración-dependiente de Solanum lycopersicum	43
Tabla 11. Efecto inhibidor de Vaccinium spp. var. duke	45
Tabla 12. Efecto inhibidor concentración-dependiente de Vaccinium spp. var. duke	47
Tabla 13. Efecto inhibidor de Vaccinium spp. var. o'neal	48
Tabla 14. Efecto inhibidor concentración-dependiente de Vaccinium spp. var. o'neal	50
Tabla 15. Efecto inhibidor de Berberis microphyla	51
Tabla 16. Efecto inhibidor concentración-dependiente de Berberis microphyla	53
Tabla 17. Efecto inhibidor de Fragaria ananassa	54

Tabla 18. Efecto inhibidor concentración-dependiente de Fragaria ananassa	56
Tabla 19. Efecto inhibidor de ácido cafeico	57
Tabla 20. Efecto inhibidor concentración-dependiente de ácido cafeico	59
Tabla 21. Efecto inhibidor de ácido ferúlico	60
Tabla 22 Efecto inhibidor concentración-dependiente de ácido ferúlico	62
Tabla 23. Efecto inhibidor de ácido <i>p</i> -cumárico	63
Tabla 24. Efecto inhibidor concentración-dependiente de ácido <i>p</i> -cumárico	65
Tabla 25. Efecto inhibidor de adenosina	66
Tabla 26. Efecto inhibidor concentración-dependiente de adenosina	68
Tabla 27. Efecto inhibidor de inosina	69
Tabla 28. Efecto inhibidor concentración-dependiente de inosina	71
Tabla 29. Efecto inhibidor de guanosina	72
Tabla 30. Efecto inhibidor concentración-dependiente de guanosina	74
Tabla 31. Efecto inhibidor de AMP	75
Tabla 32. Efecto inhibidor concentración-dependiente de AMP	77