ÍNDICE

CAP	ÍTU	LO I: INTRODUCCIÓN	1
1.1.	AN	TECEDENTES Y MOTIVACIÓN	2
1.2.	DE	SCRIPCIÓN DEL PROBLEMA	2
1.3.	SO	LUCIÓN PROPUESTA	3
1.4.	OE	JETIVOS	3
1.4	4.1.	Objetivo General	3
1.4	1.2.	Objetivos específicos	3
1.5.	AL	CANCES	4
1.6.	M	ETODOLOGÍA Y HERRAMIENTAS UTILIZADAS	4
1.7.	RE	SULTADOS ESPERADOS	4
1.8.	OR	GANIZACIÓN DEL DOCUMENTO	5
CAPÍTULO II: MARCO TEÓRICO		6	
2.1.	MA	ATERIALES COMPUESTOS	7
2.1	1.1.	Clasificación y características	8
2.1	1.2.	Tipos de laminados	10
2.1	1.3.	Mecanismos de falla en materiales laminados	12
2.2.	IN	DICADORES DE FALLA	13
2.2	2.1.	Teoría del esfuerzo máximo	14
2.2	2.2.	Teoría de la deformación máxima	14
2.2	2.3.	Teoría Tsai-Wu	14
2.2	2.4.	Teoría Tsai–Hill	14
2.3.	PR	EDICCIÓN DE LA DELAMINACIÓN	15
2.3	3.1.	Mecánica de la fractura	15
2.3	3.2.	Modelos de zonas cohesivas	16
2.4.	EN	SAYO DCB	22
2.5.	NC	DRMATIVA	24
2.6.	ID	ENTIFICACIÓN DE LOS PARÁMETROS DE LA LEY	24
2.6	5.1.	Métodos de optimización	24
2.6	5.2.	Algoritmo genético	25

CAPÍTULO III: IMPLEMENTACIÓN	
3.1. CARACTERÍSTICAS DEL MATERIAL	28
3.2. DIMENSIONES DE LA PROBETA	28
3.3. PROGRAMA ENSAYO DCB	
3.4. RESULTADOS	29
CAPÍTULO IV: OPTIMIZACIÓN Y AJUSTE DE LA CURVA	35
4.1. AJUSTE DE CURVA	36
4.2. OPTIMIZACIÓN MEDIANTE ALGORITMO GENÉTICO	38
CAPÍTULO V: CONCLUSIONES Y RECOMENDACIONES FUTURAS	42
5.1. CONCLUSIONES	43
5.2. RECOMENDACIONES FUTURAS	45
REFERENCIAS	46
ANEXOS	48
Anexo A	49
Anexo B	
Anexo C	

ÍNDICE DE FIGURAS

Figura 2.1: Fases de un material compuesto [3]	7
Figura 2.2: Materiales compuestos: en partículas, fibrosos y laminados [5]	9
Figura 2.3: Laminado unidireccional [6]	10
Figura 2.4: Laminado Ortótropo [6]	10
Figura 2.5: Apilamiento de un laminado cuasi–isótropo [6]	11
Figura 2.6: Lámina de tipo tejido de tipo tefetán [6]	11
Figura 2.7: Mecanismo de falla a nivel microscópico [4]	12
Figura 2.8: Delaminación [7]	13
Figura 2.9: Modos de ruptura interlaminares: a) Modo I, b) Modo II y c) Modo III [7]	16
Figura 2.10: Modelos de zonas cohesivas para modos puros [7]	17
Figura 2.11: Interfaz cohesiva [7]	18
Figura 2.12: Direcciones ortotrópicas de la interfaz [7]	19
Figura 2.13: Geometría de la probeta DCB con bloques de carga [12]	22
Figura 2.14: Probeta del ensayo DCB [13]	23
Figura 4.1: Matriz que representa los valores de la función objetivo	30
Figure 4.2: Individuos del algoritmo genético	37 /1
rigura 4.2. murviduos del algoritmo generico	41
Figura A.1: Representación binaria de los individuos [18]	49
Figura A.2: Conjunto de números aleatorios [18]	50
Figura A.3: Primeros individuos de la generación [18]	50
Figura A.4: Cálculo de la función objetivo [18]	51
Figura A.5: Cálculo de la probabilidad de emparejamiento [18]	51
Figura A.6: Selección de individuos para el emparejamiento [18]	51
Figura A.7: Rango emparejamiento [18]	52
Figura A.8: Puntos de corte [18]	52
Figura A.9: Selección del punto de corte [18]	52
Figura A.10: Generación de los nuevos individuos [18]	53
Figura A.11: Rango de mutación [18]	53
Figura A.12: Valor de la función objetivo de la nueva generación [18]	53

ÍNDICE DE TABLAS

Tabla 3.1: Recomendaciones de las dimensiones y tolerancia de la probeta [12]	28
Tabla 3.2: Propiedades de la fibra de vidrio [19]	28
Tabla 4.1: Parámetros de operación del algoritmo genético	40

ÍNDICE DE GRÁFICOS

Gráfico 2.1: Ley según modelo de Allix	
Gráfico 2.2: Curva F-u del ensayo DCB	23
Gráfico 3.1: Geometría de la malla de la probeta	29
Gráfico 3.2: Deformación superior de la probeta	30
Gráfico 3.3: Curva R	31
Gráfico 3.4: Curva ensayo experimental	31
Gráfico 3.5: Respuesta de la curva F-u para diferentes valores del parámetro n	32
Gráfico 3.6: Respuesta de la ley de daño para diferentes valores del parámetro n	33
Gráfico 3.7: Respuesta de la curva F-u para diferentes valores de rigidez	33
Gráfico 3.8: Respuesta de la ley de daño para diferentes valores de rigidez	34
Gráfico 4.1: Curva F-u con una rigidez constante	36
Gráfico 4.2: Tendencia de la función objetivo con rigidez constante	37
Gráfico 4.3: Curva F-u con parámetro n fijo	37
Gráfico 4.4: Tendencia de la función objetivo para un valor fijo del parámetro n	38
Gráfico 4.5: Puntos discretos de la simulación numérica	39
Gráfico 4.6: Superficie a optimizar	40
Gráfico 4.7: Comparación de curvas de respuesta global	41
Gráfico A.1: Función a maximizar [18]	49