ÍNDICE

1	IN	TRC	DDUCCIÓN	1
	1.1	AN	TECEDENTES Y MOTIVACIÓN	1
	1.2	DE	SCRIPCIÓN DEL PROBLEMA	1
	1.3	SO	LUCIÓN PROPUESTA	2
	1.4	OB	JETIVOS	2
	1.4	.1	Objetivo general	2
	1.4	.2	Objetivos específicos	2
	1.5	AL	CANCES	2
	1.6	ME	ETODOLOGÍAS Y HERRAMIENTAS UTILIZADAS	3
	1.7	RE	SULTADOS ESPERADOS	3
	1.8	OR	GANIZACIÓN DEL DOCUMENTO	3
	1.8	.1	Antecedentes teóricos	3
	1.8	3.2	Antecedentes generales	4
	1.8	3.3	Metodología propuesta	4
	1.8	5.4	Resultados	4
	1.8	8.5	Conclusiones	4
2	AN	TE	CEDENTES TEÓRICOS	5
	2.1	INT	FRODUCCIÓN	5
	2.2	BO	TADERO DE ESTÉRILES MINEROS	7
	2.3	FA	LLAS SIN CONTROL ESTRUCTURAL	7
	2.3	.1	Caída de Rocas	7
	2.3	5.2	Falla Circular	7
	2.3	.3	Falla no Circular	8
	2.4	FA	CTOR DE SEGURIDAD	9
	2.4	.1	Criterio de aceptabilidad	9
	2.5	PR	OBABILIDAD DE FALLA 1	0
	2.5	5.1	Criterios de aceptabilidad1	0
	2.6	AN	ÁLISIS SÍSMICO 1	1
	2.7	CA	LCULO DE ESTABILIDAD DE TALUDES 1	2
	2.8	AN	ÁLISIS DE ESTABILIDAD 1	4

2.3	8.1 Métodos de Equilibrio Límite	
2.	8.2 Métodos numéricos	
3 A	NTECEDENTES GENERALES	
3.1	PROYECTO CONTINUIDAD MINA GABRIELA	
3.2	UBICACIÓN Y ACCESO AL ÁREA	
3.3	GEOLOGÍA	
3.4	GEOLOGÍA ESTRUCTURAL	
3.5	DEPÓSITOS DEL SUELO DE FUNDACIÓN	
4 M	IETODOLOGÍA PROPUESTA	
4.1	INTRODUCCIÓN	
4.2	MÉTODOS DE ANÁLISIS	
4.	2.1 Análisis estático	
4.	2.2 Análisis pseudoestático sismo operacional	
4.	2.3 Análisis pseudoestático sismo máximo	
4.3	PERFILES SELECCIONADOS	
4.	3.1 Botadero China Sur	
4.	3.2 Botadero Japón/India	
4.	.3.3 Botadero Tailandia	37
4.4	PROPIEDADES DE LOS MATERIALES	39
4.5	CRITERIOS DE ACEPTABILIDAD	41
4.6	SISMICIDAD	
5 R	ESULTADOS	43
5.1	Modelamiento numérico	43
5.2	Método de equilibrio limite	55
6 C	ONCLUSIONES	69
7 R	EFERENCIAS	73
8 A	NEXOS	74
8.1	ANEXO A	74
8.2	ANEXO B	77
8.3	ANEXO C	80
8.4	ANEXO D	83
8.5	ANEXO E	85

8.6	ANEXO F	
8.7	ANEXO G	
8.8	ANEXO H	
8.9	ANEXO I	
8.10	ANEXO J	
8.11	ANEXO K	
8.12	ANEXO L	
8.13	ANEXO M	
8.14	ANEXO N	
8.15	ANEXO Ñ	

ÍNDICE DE FIGURA

Figura 2.1: Clasificación de taludes	6
Figura 2.2: Casos que requieren análisis de estabilidad de taludes (L., 2009)	6
Figura 2.3: Proyección estereográfica de rotura rotacional (Lopez, 2016)	8
Figura 2.4: Esquema de falla rotacional no circular. (SERNAGEOMIN, 2018)	8
Figura 2.5: Formulación del método pseudoestático	. 12
Figura 2.6: Esquema métodos de cálculo para estabilidad de taludes	. 13
Figura 2.7: Fuerzas actuando sobre una superficie de rotura en talud (Luis I. González	z de
Vallejos, 2004)	. 17
Figura 2.8: Formulación del método de Bishop simplificado (Véliz)	. 18
Figura 2.9: Formulación del método de Jabu (Véliz)	. 20
Figura 2.10: Formulación del método de Morgenstern-Price (Véliz)	. 21
Figura 2.11: Desarrollo del método de elementos finitos (Brady, 2004)	. 22
Figura 2.12: Envolvente de falla según criterio de Mohr-Coulomb (Dawson et al., 1999)	. 23
Figura 3.1: Ubicación PCMG	. 26
Figura 3.2: Localización de las concesiones de PCMG en la carta geológica general	. 27
Figura 3.3: Mapa de la geología distrital	. 28
Figura 3.4: Carta Altamira (Servicio Nacional de Geología y Minería)	. 29
Figura 3.5: Geología de la roca basal, Botadero China Sur	. 31
Figura 3.6: Geología de la roca basal, Botadero Tailandia	. 32
Figura 4.1: Etapas para realizar un estudio de estabilidad de taludes	. 33
Figura 4.2: Esquema general de metodología propuesta	. 34
Figura 4.3: Imagen representativa del Botadero China Sur, donde se muestran las seccio	ones
evaluadas	. 36
Figura 4.4: Imagen representativa del Botadero Japón/India, donde se muestran las seccio	ones
evaluadas	. 37
Figura 4.5: Imagen representativa del Botadero Tailandia, donde se muestran las seccio	ones
evaluadas	. 38
Figura 4.6: Identificación de los materiales correspondientes a la Sección A del Botad	lero
China Sur (Software Phase2)	. 39
Figura 4.7: Identificación de los materiales correspondientes a la Sección D del Botad	lero
Japón/India (Software Phase2)	. 40
Figura 4.8: Identificación de los materiales correspondientes a la Sección G del Botad	lero
Tailandia (Software Phase2)	. 40
Figura 4.9: Coeficiente sísmico correspondiente a PCMG	. 42
Figura 5.1: Resultado análisis SSR correspondiente a la Sección A del Botadero China	Sur
Figura 5.2: Gráfico de comportamiento entre el SRF y el desplazamiento máximo par	a la
Sección A	. 44
Figura 5.3: Resultado análisis SSR correspondiente a la Sección B del Botadero China	Sur
	. 45
Figura 5.4: Gráfico de comportamiento entre el SRF crítico y el desplazamiento máximo r	oara
la Sección B	. 45

Figura 5.5: Resultado análisis SSR correspondiente a la Sección C del Botadero China Sur
Figura 5.6: Gráfico de comportamiento entre el SRF y el desplazamiento máximo para la Sección C
Figura 5.7: Resultado análisis SSR correspondiente a la Sección D del Botadero Japón/India
Figura 5.8: Gráfico de comportamiento entre el SRF y el desplazamiento máximo para la Sección D
Figura 5.9: Resultado análisis SSR correspondiente a la Sección E del Botadero Japón/India
Figura 5.10: Gráfico de comportamiento entre el SRF y el desplazamiento máximo para la Sección E
Figura 5.11: Resultado análisis SSR correspondiente a la Sección F del Botadero Japón/India
Figura 5.12: Gráfico de comportamiento entre el SRF y el desplazamiento máximo para la Sección F
Figura 5.13: Resultado análisis SSR correspondiente a la Sección G del Botadero Tailandia
Figura 5.14: Gráfico de comportamiento entre el SRF y el desplazamiento máximo para la Sección G
Figura 5.15: Resultado análisis SSR correspondiente a la Sección H del Botadero Tailandia
Figura 5.16: Gráfico de comportamiento entre el SRF y el desplazamiento para la Sección H
Figura 5.17: Análisis de estabilidad estático de falla no circular para la sección A del Botadero China Sur
Figura 5.18: Análisis de estabilidad sismo operacional de falla no circular para la sección A del Botadero China Sur
Figura 5.19: Análisis de estabilidad sismo máximo probable de falla no circular para la sección A del Botadero China Sur
Figura 5.20: Análisis de estabilidad estático de falla no circular para la sección B del Botadero China Sur
Figura 5.21: Análisis de estabilidad sismo operacional de falla no circular para la sección B del Botadero China Sur
Figura 5.22: Análisis de estabilidad sismo máximo probable de falla no circular para la sección B del Botadero China Sur
Figura 5.23: Análisis de estabilidad estático de falla no circular para la sección C del Botadero China Sur
Figura 5.24: Análisis de estabilidad sismo operacional de falla no circular para la sección C del Botadero China Sur
Figura 5.25: Análisis de estabilidad sismo máximo probable de falla no circular para la sección C del Botadero China Sur

Figura 5.26: Análisis de estabilidad estático de falla no circular para la sección D del
Botadero Japón/India
Figura 5.27: Análisis de estabilidad sismo operacional de falla no circular para la sección D
del Botadero Japón/India
Figura 5.28: Análisis de estabilidad sismo máximo probable de falla no circular para la
sección D del Botadero Japón/India
Figura 5.29: Análisis de estabilidad estático de falla no circular para la sección E del Botadero
Japón/India
Figura 5.30: Análisis de estabilidad sismo operacional de falla no circular para la sección E
del Botadero Japón/India
Figura 5.31: Análisis de estabilidad sismo máximo probable de falla no circular para la
sección E del Botadero Japón/India
Figura 5.32: Análisis de estabilidad estático de falla no circular para la sección F del Botadero
Japón/India
Figura 5.33: Análisis de estabilidad sismo operacional de falla no circular para la sección F
del Botadero Japón/India
Figura 5.34: Análisis de estabilidad sismo máximo probable de falla no circular para la
sección F del Botadero Japón/India
Figura 5.35: Análisis de estabilidad estático de falla no circular para la sección G del
Botadero Tailandia
Figura 5.36: Análisis de estabilidad sismo operacional de falla no circular para la sección G
del Botadero Tailandia
Figura 5.37: Análisis de estabilidad sismo máximo probable de falla no circular para la
sección G del Botadero Tailandia
Figura 5.38: Análisis de estabilidad estático de falla no circular para la sección H del
Botadero Tailandia
Figura 5.39: Análisis de estabilidad sismo operacional de falla no circular para la sección H
del Botadero Tailandia
Figura 5.40: Análisis de estabilidad sismo máximo probable de falla no circular para la
sección H del Botadero Tailandia
Figura 5.41: Factor de seguridad para condición estática
Figura 5.42: Factor de seguridad para condición sismo operacional
Figura 5.43: Factor de seguridad para condición sismo máximo probable
Figura 6.1: Factor de Seguridad para condición estática
Figura 6.2: Factor de Seguridad para condición sismo operacional
Figura 6.3: Factor de Seguridad para condición de sismo máximo probable
Figura 6.4: Comparación condición estática y pseudoestática
Figura 6.5: Comparación factores asociados a métodos de análisis
Figura 8.1: Resultado reducción de la fuerza de corte para la Sección A con un SRF 1,83 74
Figura 8.2: Resultado reducción de la fuerza de corte para la Sección A con un SRF 1,84 74
Figura 8.3: Resultado reducción de la fuerza de corte para la Sección B con un SRF 2,46 77
Figura 8.4: Resultado reducción de la fuerza de corte para la Sección B con un SRF 2,51 77
Figura 8.5: Resultado reducción de la fuerza de corte para la Sección B con un SRF 2,52 78

Figura 8.6: Resultado reducción de la fuerza de corte para la Sección C con un SRF 2,44 80 Figura 8.7: Resultado reducción de la fuerza de corte para la Sección C con un SRF 2,5..80 Figura 8.8: Resultado reducción de la fuerza de corte para la Sección D con un SRF 1,74 83 Figura 8.9: Resultado reducción de la fuerza de corte para la Sección D con un SRF 1,75 83 Figura 8.10: Resultado reducción de la fuerza de corte para la Sección E con un SRF 2,1 85 Figura 8.11: Resultado reducción de la fuerza de corte para la Sección E con un SRF 2,11 Figura 8.12: Resultado reducción de la fuerza de corte para la Sección F con un SRF 1.9187 Figura 8.13: Resultado reducción de la fuerza de corte para la Sección F con un SRF 1,9287 Figura 8.14: Resultado reducción de la fuerza de corte para la Sección G con un SRF 1,8 89 Figura 8.15: Resultado reducción de la fuerza de corte para la Sección G con un SRF 1,81 Figura 8.16: Resultado reducción de la fuerza de corte para la Sección H con un SRF 1,95 Figura 8.17: Resultado reducción de la fuerza de corte para la Sección H con un SRF 1.96 Figura 8.26: Resultado análisis sismo máximo probable mediante método Bishop 100 Figura 8.27: Resultado análisis sismo máximo probable mediante método Janbu 100 Figura 8.28: Resultado análisis sismo máximo probable mediante método Spencer 101 Figura 8.29: Resultado análisis sismo máximo probable mediante método GLE..... 101 Figura 8.31: Periodo de retorno para la zona de PCMG 105 Figura 8.32: Aceleración para PCGM...... 106

ÍNDICE DE TABLA

Tabla 2.1: Principales causas de inestabilidad	5
Tabla 2.2: Criterios de aceptabilidad de Factor de Seguridad en botaderos (Hustrulid)	9
Tabla 2.3: Criterio de aceptabilidad de probabilidad de falla en botadero (Hustrulid)	11
Tabla 4.1: Características geométricas Botadero China Sur	35
Tabla 4.2: Características geométricas Botadero Japón/India	36
Tabla 4.3: Características geométricas Botadero Tailandia	37
Tabla 4.4: Parámetros Geotécnicos	39
Tabla 4.5: Criterio de aceptabilidad de Factor de Seguridad para botaderos	41
Tabla 4.6: Criterios de aceptabilidad de Probabilidad de Falla para botaderos	41
Tabla 4.7: Resultado coeficiente sísmico correspondiente PCMG	42
Tabla 5.1: Propiedades de resistencia reducidas para SRF critico de la Sección A	44
Tabla 5.2: Propiedades de resistencia reducidas para SRF critico de la Sección B	45
Tabla 5.3: Propiedades de resistencia reducidas para SRF critico de la Sección C	47
Tabla 5.4: Propiedades de resistencia reducidas para SRF critico de la Sección D	49
Tabla 5.5: Propiedades de resistencia reducidas para SRF critico de la Sección E	50
Tabla 5.6: Propiedades de resistencia reducidas para SRF critico de la Sección F	51
Tabla 5.7: Propiedades de resistencia reducidas para SRF critico de la Sección G	53
Tabla 5.8: Propiedades de resistencia reducidas para SRF critico de la Sección H	54
Tabla 8.1: Resultados obtenidos para cada SRF de la Sección A	74
Tabla 8.2: Resultados obtenidos para cada SRF de la Sección B	78
Tabla 8.3: Resultados obtenidos para cada SRF de la Sección C	80
Tabla 8.4: Resultados obtenidos para cada SRF de la Sección D	83
Tabla 8.5: Resultados obtenidos para cada SRF de la Sección E	85
Tabla 8.6: Resultados obtenidos para cada SRF de la Sección F	87
Tabla 8.7: Resultados obtenidos para cada SRF de la Sección G	89
Tabla 8.8: Resultados obtenidos para cada SRF de la Sección H	91
Tabla 8.9: Resultado análisis de estabilidad estático	94
Tabla 8.10: Resultado análisis de estabilidad sismo operacional	94
Tabla 8.11: Resultado de análisis de estabilidad sismo máximo probable	95
Tabla 8.12: Distribución de sismo corresponde a la zona de PCMG 1	.02
Tabla 8.13: Valores de a y b correspondiente para las zonas estudiadas	.03