ÍNDICE

AGRADECIMIENTOS	i
RESUMEN	ii
ABSTRACT	iii
ÍNDICE	iv
ÍNDICE DE FIGURAS	X
ÍNDICE DE TABLAS	xvi
CAPÍTULO 1 : INTRODUCCIÓN.	1
1.1 ANTECEDENTES Y MOTIVACIÓN.	1
1.2 DESCRIPCIÓN DEL PROBLEMA.	1
1.3 SOLUCIÓN PROPUESTA.	1
1.4 OBJETIVOS	1
1.4.1 Objetivo general.	1
1.4.2 Objetivos específicos	2
1.5 ALCANCES.	2
1.6 METODOLOGÍAS Y HERRAMIENTAS UTILIZADAS	3
1.6.1 Herramientas utilizadas.	4
1.7 RESULTADOS ESPERADOS.	4
1.8 ORGANIZACIÓN DEL DOCUMENTO.	5
CAPÍTULO 2 : ANTECEDENTES GENERALES.	7
2.1 UBICACIÓN Y ACCESO.	7
2.2 GEOLOGÍA	9
2.2.1 Depósitos.	9
2.2.2 Rocas estratificadas.	9
2.3 GEOLOGÍA ESTRUCTURAL	10

2.4 MI	NERALIZACIÓN	12
2.5 DE	SCRIPCIÓN PROYECTO	12
2.5.1	Rajo Gabriela	12
2.5.2	Rajo China	12
2.5.3	Rajo India	13
2.5.4	Rajo Japón	13
2.5.5	Rajo China Sur	13
2.5.6	Rajo Tailandia	13
CAPÍTUL	O 3 : REVISIÓN BIBLIOGRÁFICA	14
3.1 MÉ	ÉTODO DE CLASIFICACIÓN GEOMECÁNICA DEL MACIZO ROCOSO	14
3.1.1	Frecuencia de fracturas. Fracture Frecuency .(FF)	14
3.1.2	Resistencia a la Compresión Uniaxial Simple. Uniaxial Compressive Streng	th.
(UCS))	14
3.1.3	Rock Quality Designation. RQD. (1967)	15
3.1.4	Índice Geológico de Resistencia. Geological Strength Index. GSI. (1.995)	15
3.1.5	Rock Mass Rating. RMR ₈₉ Bieniawski.	17
3.1	.5.1 Resistencia a la compresión simple:	18
3.1	.5.2 RQD	18
3.1	.5.3 Espaciamiento.	19
3.1	.5.4 Condición de las discontinuidades	19
3.1	.5.5 Presencia de agua.	20
3.2 DI	SEÑO DE TALUD	21
3.3 CR	ITERIO DE ACEPTABILIDAD.	22
3.3.1	Factor de Seguridad. (F.S.)	22
3.3.2	Probabilidad de Falla. (PF)	23

2	3.4	CRI	TERIOS	S DE	FALLA	DEL	MACIZO	ROCOSO	Y	ANÁLISIS
I	ESTE	RUC	TURAL			1.5				
	3.4	4.1	Criterio	o de falla	de Hoek ar	nd Brown	1	•••••		24
	3.4	4.2	Criterio	o de falla	de Mohr-C	oulomb.			•••••	25
	3.4	4.3	Tipos c	le fallas		•••••			•••••	
	3.4	1.4	Falla p	lana		•••••			•••••	
	3.4	4.5	Falla C	uña					•••••	27
	3.4	1.6	Falla T	oppling		•••••			•••••	
	3.4	4.7	Falla R	otaciona	1	•••••			•••••	29
	3.5	EST	TABILII	DAD DE	TALUDES	• • • • • • • • • • • • • • • • • • • •			•••••	
	3.5	5.1	Cálculo	o de estat	oilidad de ta	ludes po	or equilibrio lí	ímite	•••••	31
		3.5.	1.1 M	étodos ex	actos	•••••				
		3.5.	1.2 M	odelo det	erminístico	•••••				31
		3.5.	1.3 Eq	uilibrio l	ímite falla j	plana			•••••	32
		3.5.	1.4 Eq	uilibrio l	ímite falla o	cuña			•••••	33
		3.5.	1.5 M	odelo pro	babilístico.	•••••			•••••	34
		3.5.	1.6 M	étodos no	exactos	•••••				34
		3.5.	1.7 M	étodos do	ovelas aprox	kimados.				36
		3.5.	1.8 M	étodos do	ovelas preci	sos				36
	3.5	5.2	Cálculo	o de estat	oilidad de ta	ludes po	or deformacio	nes		37
		3.5.	2.1 M	odelamie	nto numério					37
CA	PÍTU	ULO)4 :I	DESARR	OLLO DE	LA ME	ETODOLOG	ÍA	••••••	
2	4.1	INF	ORMA	CIÓN UI	FILIZADA.					
	4.1	l.1	Levant	amiento	de informac	ión geol	ógica y geoté	cnica		
	4.1	1.2	Unidad	es litolós	gicas	-				40
					-					

4.1.3	Unidades geotécnicas.	41			
4.1.4	Caracterización geotécnica42				
4.1.5	Características geomecánicas del macizo rocoso				
4.1.6	Información estructural				
4.1.7	Diseño Minero43				
4.1.	7.1 Sector China Sur	43			
4.1.	7.2 Sector Tailandia	44			
4.1.	7.3 Sector Japón	44			
4.1.8	Sismicidad.	44			
CAPÍTULC	5 : CARACTERIZACIÓN GEOTÉCNICA	46			
5.1 CLA	ASIFICACIÓN GEOMECÁNICA.	48			
5.2 PRO	OPIEDADES MECÁNICAS DEL MACIZO ROCOSO	50			
5.2.1	Compresión Uniaxial Simple.	50			
5.2.2	Compresión Triaxial	50			
5.2.3	Tracción indirecta (TI)	51			
5.2.4	Modulo elástico.	52			
5.2.5	Peso unitario (PU).	52			
5.3 CA	RACTERÍSTICAS GEOMECÁNICAS	53			
5.4 CA	RACTERÍSTICAS ESTRUCTURALES.	54			
CAPÍTULC) 6 : ANÁLISIS DE ESTABILIDAD DE TALUDES	57			
6.1 DE	TERMINACIÓN DE PERFILES	57			
6.1.1	Perfiles China Sur	57			
6.1.2	Perfiles Tailandia	58			
6.1.3	Perfiles Japón	59			
6.2 AN	ÁLISIS CINEMÁTICO PARA FALLAS CON CONTROL ESTRUCTURAL.	60			

6.3 CRITERIO DE ACEPTABILIDAD PROPUESTO
6.4 ANÁLISIS DE EQUILIBRIO LÍMITE BAJO MODELAMIENTO
DETERMINÍSTICO Y PROBABILÍSTICO, PARA FALLAS CON CONTROL
ESTRUCTURAL64
6.4.1 Equilibrio límite, perfiles China Sur64
6.4.2 Equilibrio límite, perfiles Tailandia65
6.4.3 Equilibrio límite, perfiles Japón
6.5 ANÁLISIS TENSIÓN-DEFORMACIÓN Y ANÁLISIS DE EQUILIBRIO LÍMITE
BAJO MODELAMIENTO DETERMINÍSTICO Y PROBABILISTICO DE FALLAS SIN
CONTROL ESTRUCTURAL
6.5.1 Análisis talud banco-berma69
6.5.2 Análisis talud nivel global72
6.6 EVALUACIÓN DE CAMBIO DE ÁNGULO DE TALUD GLOBAL, PARA
FALLAS CON CONTROL ESTRUCTURAL
6.6.1 Caso falla plana74
6.6.2 Caso falla cuña75
CAPÍTULO 7 : ANÁLISIS DE RESULTADOS77
7.1 REFERENTE A LA CARACTERIZACIÓN GEOTÉCNICA
7.2 REFERENTE A LA ESTABILIDAD DE TALUDES
CONCLUSIONES
REFERENCIAS
ANEXOS
ANEXO A: PROCESAMIENTO DE DATOS Y METODOLOGÍAS
UBICACIÓN ESPACIAL DE INFORMACIÓN GEOLÓGICA-GEOTÉCNICA
ENSAYOS DE LABORATORIO87
ESTIMACIÓN DE RESISTENCIA A LA COMPRESION UNIXIAL EN SITU

ANEXO B: ANÁLISIS REALIZADOS	89
ANÁLISIS CINEMÁTICO CON RED ESTEREOGRÁFICA	89
Sector China Sur estructuras menores análisis banco-berma	89
Análisis cinemático taludes críticos.	90
Sector Japón estructuras menores análisis banco-berma	94
Análisis cinemático taludes críticos.	95
ANÁLISIS DE ESTABILIDAD TENSIÓN-DEFORMACIÓN	99
Evaluación a nivel banco-berma UG GRAVA.	99
Sector China Sur	
Sector Tailandia	103
Sector Japón	105

ÍNDICE DE FIGURAS

FIGURA 2.1: Vista en planta área Proyecto Continuidad Minera Gabriela. (Tecnología y
Geociencias. LTDA., 2016)
FIGURA 2.2: Carta Altamira, Regiones Antofagasta y Atacama. Escala 1:100.000. (Servicio
Nacional de Geología y Mineria-SERNAGEOMIN)11
FIGURA 3.1: Estimación del GSI, en base a una descripción geológica del macizo rocoso17
FIGURA 3.2: Componentes geométricos en el diseño de un talud. (Fuente: (Read & Stacey,
2009)
FIGURA 3.3: Condiciones de buzamiento para falla plana. Representación visual falla plana.
Visualización en Red de Smith para falla plana. (Wyllie & Mah, 2004)27
FIGURA 3.4: Representación visual falla cuña. Condiciones de buzamiento para falla cuña.
Visualización en Red de Smith para falla cuña. (Wyllie & Mah, 2004)28
FIGURA 3.5: Condiciones de buzamiento para falla toppling. Visualización en Red de Smith
para falla toppling
FIGURA 3.6: Falla rotacional o circular
FIGURA 3.7: Clasificación de métodos de cálculo por equilibrio límite. (Fuente: Elaboración
propia)
FIGURA 3.8: Geometría de la rotura plana en talud. a) Grita de tracción en cabecera, b) Grieta
de tracción en la cara del talud. (Vallejo 2004, modificado de Hoek y Bray, 1981)32
FIGURA 3.9: Resolución de fuerzas para calcular el factor de seguridad de la cuña: (a) vista
de la cuña que mira la cara que muestra la definición de los ángulos β y ξ , y las reacciones en
los planos deslizantes RA y RB; (b) red estereográfica que muestra la medición de los ángulos
β y $\xi;$ (c) corte transversal de cuña que muestra la resolución del peso de cuña W. (Read &
Stacey, 2009)
FIGURA 3.10: Representación de métodos de dovelas. Fuerzas actuando en dovela. (Wyllie &
Mah, 2004)
FIGURA 5.1: Histograma FF de datos compositados. (Fuente: Elaboración propia)46
FIGURA 5.2: Histograma RQD de datos compositados. (Fuente: Elaboración propia)47
FIGURA 5.3: Histograma RMR ₈₉ calculado. (Fuente: Elaboración propia.)49

FIGURA 6.1: (a) Secciones propuestas para rajo China Sur 1. (b) Secciones propuestas para
rajo China Sur 2
FIGURA 6.2: Secciones propuestas rajo Tailandia 158
FIGURA 6.3: Secciones propuestas Rajo Tailandia 2
FIGURA 6.4: a) Secciones propuestas para rajo Japón 1. (b) Secciones propuestas para rajo
Japón 2
FIGURA 6.5: Secciones propuestas rajo Japón Norte60
FIGURA 6.6: Representación de análisis cinemático para falla tipo plana, en talud nivel banco
berma referente a sector China Sur 1, Dip 70°, Dip Dir 63°. Fuente: (Elaboración Propia,
Software Dips)62
FIGURA 6.7: Representación de análisis cinemático para falla tipo plana, en talud a nivel
ángulo global referente a sector China Sur 1, Dip Dir 256°, Dip 54°. Fuente: (Elaboración
Propia, Software Dips)63
FIGURA 6.8: Criterios de aceptabilidad para rajos de Proyecto Continuidad Mina Gabriela.
(Fuente: EIA, Tecnología y Geociencias)63
FIGURA 6.9: Esquema de equilibrio límite de la pared con dirección Dip/DipDir 63°/070°
con estructura 34°/049° la cual genera bloque de deslizamiento, análisis en condición de sismo
máximo, rajo China Sur 1. (Fuente: Elaboración propia, Software: Rocplane)65
FIGURA 6.10: Esquema de equilibrio límite de la pared con dirección Dip/DipDir 54°/226°
con estructura 39°/236° la cual genera bloque de deslizamiento, análisis en condición de sismo
máximo, rajo Tailandia 2. (Fuente: Elaboración propia, Software: Rocplane)66
FIGURA 6.11: Esquema de equilibrio límite de la pared con dirección Dip/DipDir 70°/270°
con estructura 35°/243° la cual genera bloque de deslizamiento, análisis en condición de sismo
máximo, rajo Japón Norte. (Fuente: Elaboración propia, Software: Rocplane)67
FIGURA 6.12: Ejemplo de análisis tensión -formación a sección Ch1a para establecer
superficie de corte en sector que posee unidad geológica GRAVA. En dicho ejemplo se
somete a un análisis pseudoestático con sismo máximo, y se determina que la falla critica
ocurre con un F.S. de 2,94. (Fuente: Elaboración propia, Software: Phase 2.0 v8)70
FIGURA 6.13: Ejemplo de análisis de equilibrio limite método GLE, para sección Ch1a,
ajustando el análisis a la superficie de corte obtenida en análisis tensión deformación. En

dicho ejemplo se somete a un análisis pseudoestático con sismo máximo, y se determina que la falla critica ocurre con un F.S. de 2,81. (Fuente: Elaboración propia, Software: Slide v6).....70 FIGURA 6.14: Correlación entre altura de GRAVA presente en análisis banco-berma, con Factor de Seguridad obtenido bajo análisis de equilibrio límite GLE, y análisis tensióndeformación, en condiciones de sismo máximo......71 FIGURA 6.15: Ejemplo de análisis tensión -deformación a sección T1b para establecer superficie de corte a nivel talud global. En dicho ejemplo se somete a un análisis pseudoestático con sismo máximo, y se determina que la falla critica ocurre con un F.S. de FIGURA 6.16: Ejemplo de análisis de equilibrio limite método GLE, para sección **T1b**, ajustando el análisis a la superficie de corte obtenida en análisis tensión deformación. En dicho ejemplo se somete a un análisis pseudoestático con sismo máximo, y se determina que la falla critica ocurre con un F.S. de 6,71. (Fuente: Elaboración propia, Software: Slide v6).....73 FIGURA 6.17: Gráfico de variación de ángulo de talud global con factor de seguridad y probabilidad de falla obtenido, para sección T1b de rajo Tailandia 2.....74 FIGURA 6.18: Gráfico de variación de ángulo de talud global con factor de seguridad y FIGURA 6.19: Gráfico de variación de ángulo de talud global con factor de seguridad y

ANEXO A

ANEXO B

FIGURA B. 2: Proyección estereográfica de sector rajo China Sur en ella se representa la
familia estructural de las estructuras menores
FIGURA B. 3: Detección de susceptible falla tipo toppling, talud Dip/DipDir 70°/230°, rajo
China Sur 190
FIGURA B. 4: Detección de susceptible falla tipo cuña, talud Dip/DipDir 70°/325°, rajo
China Sur 190
FIGURA B. 5: Detección de susceptible falla tipo plana, talud Dip/DipDir 70°/63°, rajo
China Sur 191
FIGURA B. 6: Detección de susceptible falla tipo cuña, talud Dip/DipDir 70°/63°, rajo China
Sur 191
FIGURA B. 7: Detección de susceptible falla tipo plana, talud Dip/DipDir 70°/335°, rajo
China Sur 2
FIGURA B. 8: Detección de susceptible falla tipo cuña, talud Dip/DipDir 70°/335°, rajo
China Sur 2
FIGURA B. 9: Detección de susceptible falla tipo plana, talud Dip/DipDir 70°/68°, rajo
China Sur 2
FIGURA B. 10: Detección de susceptible falla tipo cuña, talud Dip/DipDir 70°/68°, rajo
China Sur 2
FIGURA B. 11: Proyección estereográfica de sector rajo Japón en ella se representa la familia
estructural de las estructuras menores94
FIGURA B. 12: Detección de susceptible falla tipo plana, talud Dip/DipDir 70°/103°, rajo
Japón 195
FIGURA B. 13: Detección de susceptible falla tipo cuña, talud Dip/DipDir 70°/103°, rajo
Japón 195
FIGURA B. 14: Detección de susceptible falla tipo plana, talud Dip/DipDir 70°/250°, rajo
Japón 196

FIGURA B. 15: Detección de susceptible falla tipo cuña, talud Dip/DipDir 70°/170°, rajo
Japón 296
FIGURA B. 16: Detección de susceptible falla tipo plana, talud Dip/DipDir 70°/255°, rajo
Japón 297
FIGURA B. 17: Detección de susceptible falla tipo plana, talud Dip/DipDir 70°/82°, rajo
Japón 297
FIGURA B. 18: Detección de susceptible falla tipo cuña, talud Dip/DipDir 70°/82°, rajo
Japón 2
FIGURA B. 19: Detección de susceptible falla tipo cuña, talud Dip/DipDir 70°/176°, rajo
Japón Norte
FIGURA B. 20: Detección de susceptible falla tipo plana, talud Dip/DipDir 70°/270°, rajo
Japón Norte99
FIGURA B. 21: Evaluación tensión-deformación UG GRAVA, Ch1a bajo caso estático, sismo
operacional y máximo.(Phase 2.0 v8)100
FIGURA B. 22: Evaluación tensión-deformación UG GRAVA, Ch1b bajo caso estático, sismo
operacional y máximo.(Phase 2.0 v8)100
FIGURA B. 23: Evaluación tensión-deformación UG GRAVA, Ch1c bajo caso estático, sismo
operacional y máximo. (Phase 2.0 v8)101
FIGURA B. 24. Evaluación tensión-deformación UG GRAVA, Ch1d bajo caso estático, sismo
operacional y máximo.(Phase 2.0 v8)101
FIGURA B. 25: Evaluación tensión-deformación UG GRAVA, Ch2b bajo caso estático, sismo
operacional y máximo.(Phase 2.0 v8)102
FIGURA B. 26: Evaluación tensión-deformación UG GRAVA, Ch2c bajo caso estático, sismo
operacional y máximo.(Phase 2.0 v8)102
FIGURA B. 27: Evaluación tensión-deformación UG GRAVA, T1a bajo caso estático, sismo
operacional y máximo.(Phase 2.0 v8)103
FIGURA B. 28: Evaluación tensión-deformación UG GRAVA, T1b bajo caso estático, sismo
operacional y máximo.(Phase 2.0 v8)103
FIGURA B. 29: Evaluación tensión-deformación UG GRAVA, T1d bajo caso estático, sismo
operacional y máximo.(Phase 2.0 v8)104

FIGURA B. 30: Evaluación tensión-deformación UG GRAVA, T1e bajo case	o estático, sismo
operacional y máximo.(Phase 2.0 v8)	
FIGURA B. 31: Evaluación tensión-deformación UG GRAVA, J1c bajo caso	o estático, sismo
operacional y máximo. (Phase 2.0 v8)	

ÍNDICE DE TABLAS

TABLA 3.1: Calidad de roca según RQD. 15
TABLA 3.2: Clasificación calidad del Macizo según GSI16
TABLA 3.3: Calidad del macizo rocoso según RMR ₈₉ . (Z.T.Bieniawski, 1989)18
TABLA 3.4: Clasificación RMR89, resistencia a la compresión simple estimada.
(Z.T.Bieniawski, 1989)18
TABLA 3.5: Clasificación RMR89, índice de calidad RQD. (Z.T.Bieniawski, 1989)19
TABLA 3.6: Clasificación RMR89, espaciamiento. (Z.T.Bieniawski, 1989)19
TABLA 3.7: Clasificación RMR89, abertura de discontinuidades. (Z.T.Bieniawski, 1989)19
TABLA 3.8: Clasificación RMR89, persistencia de discontinuidades. (Z.T.Bieniawski, 1989)
TABLA 3.9: Clasificación RMR89, rugosidad de discontinuidades. (Z.T.Bieniawski, 1989).20
TABLA 3.10: Clasificación RMR89, relleno de discontinuidades. (Z.T.Bieniawski, 1989)20
TABLA 3.11: Clasificación RMR89, alteración de discontinuidades. (Z.T.Bieniawski, 1989)
TABLA 3.12: Clasificación RMR89, presencia de agua subterránea. (Z.T.Bieniawski, 1989)20
TABLA 3.13: Criterios de aceptabilidad. (Read & Stacey, 2009)24
TABLA 3.14: Ecuaciones presentes en equilibrio hiperestático, dovelas. (Read & Stacey,
2009)
TABLA 3.15: Incógnitas presentes en equilibrio hiperestático, dovelas. (Read & Stacey, 2009)
TABLA 3.16: Descripción de métodos numéricos. (Diaz, 1998) 38
TABLA 4.1: Unidades geotécnicas planteadas. 41
TABLA 4.2: Propiedades geomecánicas de estructuras. (Fuente: Tecnología y Geociencias.)43
TABLA 4.3: Coeficiente sísmico para sismo operacional y máximo. (Tecnología y
Geociencias. LTDA., 2016)45
TABLA 5.1: Frecuencia de fracturas y RQD según unidades litológicas y geotécnicas. (UG)48
TABLA 5.2: Índice de calidad geomecánica RMR ₈₉ para cada una de las UG. (Fuente:
Elaboración propia.)

TABLA 5.3: Resumen resultados ensayos de compresión simple. (Fuente: Elaboración propia)
TABLA 5.4: Resumen ensayos de compresión triaxial. (Fuente: Elaboración propia.) 51
TABLA 5.5: Resumen ensayos de tracción indirecta. (Fuente: Elaboración propia.) 52
TABLA 5.6: Resumen ensayos de velocidad de onda. (Fuente: Elaboración propia,)
TABLA 5.7: Resumen ensayos de PUP y PUG. (Fuente: Elaboración propia.)
TABLA 5.8: Parámetros geomecánicos de las diferentes UG. (Fuente: Elaboración propia
software RocLab)
TABLA 5.9: Parámetros geomecánicos según criterio de rotura de Mohr-Coulomb. Fuente:
(Ingeniería de rocas LTDA., 2008)
TABLA 5.10: Detalle de estructuras principales Rank 3 Y 4 según sector. (Fuente: Tecnología
y Geociencias)
TABLA 5.11: Detalle de set estructurales obtenidos según análisis estereográfico. (Fuente:
Elaboración propia.)
TABLA 6.1: Características geométricas y de orientación de perfiles propuestos para análisis
sector China Sur
TABLA 6.2: Características geométricas y de orientación de perfiles propuestos para análisis
sector Tailandia
TABLA 6.3: Características geométricas y de orientación de perfiles propuestos para análisis
sector Japón-India60
TABLA 6.4: Resultados análisis cinemático talud nivel banco berma, Rank 1 y 261
TABLA 6.5: Resultados análisis cinemático talud nivel global, Rank 3 y 4
TABLA 6.6: Resumen análisis equilibrio límite, para falla tipo plana y cuña en condiciones
estáticas y pseudoestáticas, a nivel banco-berma Sector China Sur. (Fuente: Elaboración
propia, Software: Rocplane)64
TABLA 6.7: Resumen análisis equilibrio límite, para falla tipo plana en condiciones estáticas
y pseudoestáticas, a nivel talud global. Sector Tailandia. (Fuente: Elaboración propia,
Software: Rocplane)
TABLA 6.8: Resumen análisis equilibrio límite, para falla tipo plana y cuña en condiciones
estáticas y pseudoestáticas, a nivel talud banco-berma. Sector Japón. (Fuente: Elaboración
propia, Software: Rocplane)67

ANEXO A

TABLA A. 1: Desglose de los ensayos realizados a cada uno de los sondajes......87