ÍNDICE

1. INTRODUCCIÓN	1
1.1 Definición del problema	1
1.2 Objetivos	2
1.2.1 Objetivo General	2
1.2.2 Objetivo Específico	2
1.3 Alcances	2
2. MARCO TEÓRICO	4
2.1 Relave	4
2.1.1 Consideraciones de seguridad para trabajar sobre un tranque de relave.	6
2.2 Opciones para la descarga de los relaves	8
2.3 Estado de acomodo de las partículas en playa de relave	9
2.3.1 Densidad relativa	9
2.4 Capacidad de soporte de un suelo	12
2.4.1 Capacidad de carga de Terzagui	13
2.4.2 Capacidad de carga de Meyerhof	13
2.4.3 Estudio capacidad de carga de Ashutosh Trivedi	15
2.5 Relación entre la densidad relativa (DR) y el ángulo de fricción de suelo (Ø).	17
2.6 Comportamiento energético de un suelo	18
2.6.1 Asentamiento en suelo	18
2.6.1.1 Asentamiento Inmediato	19
3. METODOLOGÍA	20
3.1 Materiales	22
3.2 Ensayo densidades	22
3.3 Hundimiento por impacto	23

	3.4 Desarrollo de capacidad de carga lenta experimental	. 24
	3.5 Capacidad de carga última	. 25
4.	RESULTADOS Y DISCUSIÓN	. 26
	4.1 Densidad mínima y máxima	. 26
	4.2 Densidad relativa	. 26
	4.3 Hundimiento	. 27
	4.3.1 Hundimiento en arena seca	. 27
	4.3.2 Hundimiento para arena con humedad igual a 2%	. 28
	4.3.3 Hundimiento para arena con humedad igual a 5%	. 28
	4.3.4 Hundimiento para arena con humedad igual a 7%	. 29
	4.3.5 Hundimiento para arena con humedad igual a 10%	. 30
	4.3.6 Hundimiento para arena con humedad igual a 15%	. 30
	4.3.7 Relación entre hundimiento y número de caídas	. 35
	4.3.8 Relación entre energía de caída y hundimiento (R _{E/h})	. 40
	4.4 Capacidad de carga	. 47
	4.4.1 Capacidad de carga de Terzagui	. 47
	4.4.2 Capacidad de carga de Meyerhof	. 47
	4.4.3 Capacidad de carga lenta experimental	. 48
	4.4.4 Capacidad de carga experimental vs teórica	. 54
5.	CONCLUSIÓN	. 63
R	ECOMENDACIONES	. 64
R	EFERENCIAS	. 65
Δ	NEXOS	67

Camila Bravo Díaz v

ÍNDICE DE FIGURAS

Ilustración 2.1: Modelo tranque de relaves	. 5
llustración 2.2: Tipos de descarga de relave	. 6
llustración 2.3: instalación y mantención de geomembrana en depósito de relave	. 7
llustración 2.4: Depositación de relave	. 8
llustración 2.5: Descripción del suelo según la densidad relativa	12
llustración 2.6: Naturaleza de falla en un suelo por capacidad de carga	12
llustración 2.7: Gráfico con tipo de falla probable en arena, dependiendo de su	
compacidad relativa y la relación Df/B*	15
llustración 2.8: variación de la capacidad de soporte con distintas cantidades de finos	
para los diferentes valores de d/D	16
llustración 2.9: Variación de la capacidad de soporte, S/D (%) según contenido de fino),
FC = 0% para diferentes valores de d/D	17
llustración 2.10: Relación entre la densidad relativa y ángulo de fricción según tamaño)
de arena	18
llustración 2.11: Asentamiento inmediato según densidad relativa y saturación del sue	lo,
elaboración propia	19
llustración 3.1: Esquema de cómo se dejó caer el bloque de concreto, elaboración	
propia	20
ÍNDICE DE TABLAS	
Tabla 3.1, detalle de ensayos realizados en estudio	21
Tabla 3.2, estado de arena para realizar ensayo de hundimientos por impacto	24
Tabla 4.1, resultado densidad mínima	26
Tabla 4.2, resultado densidad máxima	26
Tabla 4.3, resultado densidades relativas	26
Tabla 4.4, resultado ensayos de hundimiento acumulado para arena seca	27
Tabla 4.5, resultado ensayos de hundimiento acumulado para arena con humedad igu	ıal
a 2%	28

Camila Bravo Díaz vi

Tabla 4.6, resultado ensayos de hundimiento acumulado para arena con humedad igu	ıal
a 5%	28
Tabla 4.7, resultado ensayos de hundimiento acumulado para arena con humedad igu	ıal
a 7%	29
Tabla 4.8, resultado ensayos de hundimiento acumulado para arena con humedad igu	ıal
a 10%	30
Tabla 4. 9, resultado ensayos de hundimiento acumulado para arena con humedad	
igual a 15%	30
Tabla 4.10, relación energía/hundimiento para una densidad relativa de 30%	40
Tabla 4.11, relación energía/hundimiento para una densidad relativa de 50%	41
Tabla 4.12, relación energía/hundimiento para una densidad relativa de 70%	41
Tabla 4.13, relación energía/hundimiento para una densidad relativa de 80%	42
Tabla 4.18, Capacidad de carga de Terzagui	47
Tabla 4.19, Capacidad de carga de Meyerhof	47
Tabla 4.20, carga necesaria para que existe el mismo hundimiento en cada primera	
caída de 50 y 70 cm	48
Tabla 4.21, diferencia de hundimiento entre ensayos	48
Tabla 4.22, variabilidad de hundimiento del suelo para distintas densidades relativas	
según altura de caída de 50 y 70 cm	51
Tabla 4.23, tensión asociada a la carga gradual Máxima aplicada para replicar el	
hundimiento para caídas de 50 y 70 cm	54
Tabla 4.24, Capacidad de carga de Meyerhof y Terzagui para hundimiento en caídas	de
50 y 70 cm	54
Tabla 4.25, diferencias entre capacidad de carga por hundimiento y superficial entre	
Meyerhof y Terzagui	
Tabla 4.26, Capacidad de carga última de (Trivedi, 2009) para hundimientos por caída	as
de 50 y 70 cm 55	

Camila Bravo Díaz vii

INDICE DE GRÁFICAS

Gráfica 4.1, Densidad relativa versus densidad seca2	7
Gráfica 4.2, relación entre el hundimiento y la saturación, para una densidad relativa de 30%	
Gráfica 4.3, relación entre el hundimiento y la saturación, para una densidad relativa de 50%)
Gráfica 4.4, relación entre el hundimiento y la saturación, para una densidad relativa de	
Gráfica 4.5, relación entre el hundimiento y la saturación, para una densidad relativa de 80%	
Gráfica 4.6, densidad relativa versus hundimiento, para una caída de 50 cm en arena seca	3
Gráfica 4.7, densidad relativa versus hundimiento, para una caída de 70 cm en arena seca	
Gráfica 4.8, densidad relativa versus hundimiento, para una caída de 100 cm en arena seca	
Gráfica 4.9, Relación hundimiento acumulado y N° de caídas para una densidad relativa	а
Gráfica 4.10, Relación hundimiento acumulado y N° de caídas para una densidad relativa de 50%3	6
Gráfica 4.11, Relación hundimiento acumulado y N° de caídas para una densidad relativa de 70%3	6
Gráfica 4.12, Relación hundimiento acumulado y N° de caídas para una densidad relativa de 80%	
Gráfica 4.13, promedio de diferencia de hundimiento según N° de caídas para diferentes densidades relativas	
Gráfica 4.14, promedio de diferencia de hundimiento según N° de caídas separadas po saturación	r

Camila Bravo Díaz viii

Grafica 4.15, energia (WH) versus nundimiento, para diferentes tipos de saturación y	
una densidad relativa de 30%	43
Gráfica 4.16, energía (WH) versus hundimiento, para diferentes tipos de saturación y	
una densidad relativa de 50%	43
Gráfica 4.17, energía (WH) versus hundimiento, para diferentes tipos de saturación y	
una densidad relativa de 70%	43
Gráfica 4.18, energía (WH) versus hundimiento, para diferentes tipos de saturación y	
una densidad relativa de 80%	44
Gráfica 4.19, R _{E/h} experimental, para una densidad relativa de 30%	44
Gráfica 4.20, R _{E/h} experimental, para una densidad relativa de 50%	45
Gráfica 4.21, R _{E/h} experimental, para una densidad relativa de 70%	45
Gráfica 4.22 R _{E/h} experimental, para una densidad relativa de 80%	46
Gráfica 4.23, Diferencia de hundimiento versus saturación en la arena	49
Gráfica 4.24, saturación versus hundimiento para arena con una densidad relativa de	
20%	50
Gráfica 4.25, saturación versus hundimiento para arena con una densidad relativa de	
30%	50
Gráfica 4.26, saturación versus hundimiento para arena con una densidad relativa de	
40%	50
Gráfica 4.27, relación entre hundimiento y densidad relativa para una caída de 50 cm	52
Gráfica 4.28, relación entre hundimiento y densidad relativa para una caída de 70 cm	52
Gráfica 4.29, saturación versus hundimiento para una caída de 50 cm	53
Gráfica 4.30, saturación versus hundimiento para una caída de 70 cm	53
Gráfica 4.31, hundimiento versus capacidad de carga a una densidad relativa de 20%	У
una altura de caída de 50 cm	56
Gráfica 4.32, hundimiento versus capacidad de carga a una densidad relativa de 30%	У
una altura de caída de 50 cm	56
Gráfica 4.33, hundimiento versus capacidad de carga a una densidad relativa de 40%	y
una altura de caída de 50 cm	57
Gráfica 4.34, hundimiento versus capacidad de carga a una densidad relativa de 20%	y
una altura de caída de 70 cm	57

Camila Bravo Díaz ix

Gráfica 4.35, hundimiento versus capacidad de carga a una densidad relativa de 30% y	у
una altura de caída de 70 cm5	58
Gráfica 4.36, hundimiento versus capacidad de carga a una densidad relativa de 40% y	у
una altura de caída de 70 cm5	58
Gráfica 4.37, Respuesta de hundimiento relacionada a la densidad relativa y separado	1
por rango de saturación para altura de caída de 50 cm	30
Gráfica 4.38, Respuesta de hundimiento relacionada a la densidad relativa y separado	
por rango de saturación para altura de caída de 70 cm	30
Gráfica 4.39, Ábaco donde se relaciona el hundimiento con la capacidad de carga	
última que se genera y como se relaciona la densidad relativa6	32
Gráfica 4.40, Ábaco para segunda caída donde se relaciona el hundimiento con la	
capacidad de carga última que se genera y como se relaciona la densidad relativa 6	32
INDICE DE ANEXOS	
INDIGE DE ANEXOG	
Anexo 1, modificación de las ecuaciones de capacidad de carga por nivel de aguas	
freáticas 6	37
Anexo 2, tablas con factores de capacidad de carga de Terzagui y Meyerhof 6	37
Anexo 3, Tamaño distribución arenas6	38
Anexo 4, instrumentos utilizados en los ensayos	39
Anexo 5, Procedimiento para medir el volumen del molde6	39
Anexo 6, Procedimiento de tamizado arena	70
Anexo 7, granulometría de la arena	70
Anexo 8, arena separada por tamaño	71
Amous O coords do arone coloniano (tomo ão Oroma)	•
Anexo 9, secado de arena selecciona (tamaño 2mm)	
Anexo 9, secado de arena selecciona (tamano 2mm)	71
	71 72
Anexo 10, Procedimiento densidad mínima	71 72 72
Anexo 10, Procedimiento densidad mínima	71 72 72 73
Anexo 10, Procedimiento densidad mínima	71 72 73 73

Camila Bravo Díaz x

Anexo 16, hundimiento versus densidad relativa para caída de 50 cm a diferentes	
humedades de arena	. 75
Anexo 17, hundimiento versus densidad relativa para caída de 70 cm a diferentes	
humedades de arena	. 78
Anexo 18, hundimiento versus densidad relativa para caída de 100 cm a diferentes	
humedades de arena	. 81
Anexo 19, diferencia entre caídas para diferentes humedades de arena	. 84
Anexo 20, gráfica diferencia de hundimientos para caída de 50, 70 y 100 cm para	
densidad relativa de 30, 50, 70 y 80%	. 86
Anexo 21, Relación entre N° de caídas y saturación, separadas por altura de caída y	
rango de densidad relativa	. 88
Anexo 22, Espectro de caídas con variación de hundimiento versus su N° de caídas,	
para diferentes alturas de caídas y densidades relativas	. 92

Camila Bravo Díaz xi