Índice general

1	Intr	oduccić	n General	1
	1.1	Descri	pción de la problemática	4
	1.2	Marco	teórico	9
		1.2.1	Convertidores DC-DC	9
			1.2.1.1 Regulador de tensión básico	0
			1.2.1.2 El convertid <mark>or conmutado b</mark> ásico	0
			1.2.1.3 El convertid <mark>or reductor o bu</mark> ck	2
			1.2.1.4 El convertid <mark>or elevador o b</mark> oost 1	3
			1.2.1.5 El convertidor reductor-elevador o buck-boost	4
			1.2.1.6 El convertidor Ćuk	5
			1.2.1.7 El convertidor SEPIC D. D	6
		1.2.2	El convertidor versátil buck-boost 1	7
			1.2.2.1 Obtención del modelo del convertidor	9
		1.2.3	Clases de frecuencia de conmutación	:5
		1.2.4	Algoritmos MPPT	28
			1.2.4.1 Algoritmo de Perturbar & Observar (P&O)	9
			1.2.4.2 Algoritmo de Conductancia Incremental	2
			1.2.4.3 Voltaje fraccional de circuito abierto	4
			1.2.4.4 Corriente fraccionaria de cortocircuito	5
	1.3	Objeti	vos	7
		1.3.1	Objetivo general	7
		1.3.2	Objetivos específicos	7
	1.4	Alcano	es y limitaciones	57

	1.5	Metod	ología	39
		1.5.1	Etapa I: Investigación y simulación de algoritmos MPPT	39
		1.5.2	Etapa II: Modelamiento del convertidor versátil buck-boost	39
		1.5.3	Etapa III: Conceptos de control predictivo	39
2	Algo	oritmos	МРРТ	42
	2.1	Caract	erísticas del panel fotovoltaico	42
	2.2	Circuit	tos de simulación de algoritmos MPPT	45
	2.3	Simula	ación método P&O	47
	2.4	Simula	ación método conductancia incremental	49
	2.5	Simula	ación voltaje fraccionario de circuito abierto	50
	2.6	Simula	ación corriente fraccionaria de cortocircuito	51
3	Dise	ño del o	controlador	54
	3.1	El con	trol predictivo de estado <mark>s fin</mark> itos b <mark>asado</mark> en modelo	54
		3.1.1	El principio del contro <mark>l FC</mark> S-MPC .	55
		3.1.2	Tipos de control en modo corriente	56
			3.1.2.1 Control de corriente de valor valle	57
			3.1.2.2 Control de corriente de valor peak	58
			3.1.2.3 Control de corriente de valor promedio	58
	3.2	Impler	nentación de una estrategia de control FCS-MPC para un MPPT	59
		3.2.1	Estrategia de control multilazo para el MPPT	59
		3.2.2	Control FCS-MPC	61
	3.3	Contro	ol FCS-MPC de frecuencia cuasi-constante	63
		3.3.1	Estados definidos para el controlador	64
		3.3.2	Funcionamiento y modos de operación del controlador	64
		3.3.3	Banda de histéresis de ancho fijo	71
		3.3.4	El controlador PI digital	72
		3.3.5	Estabilidad y ancho de banda de los controladores	73
		3.3.6	El controlador digital de señales DSC	78
		3.3.7	Implementación digital del controlador del lazo interno de corriente	78

			3.3.7.1	Programa principal sin prioridad de interrupción	79
			3.3.7.2	Subfunción A con prioridad de interrupción	80
			3.3.7.3	Subfunción B con prioridad de interrupción	81
		3.3.8	Impleme	entación digital del lazo interno de corriente, lazo externo de ten-	
			sión y al	goritmo MPPT	82
			3.3.8.1	Programa principal sin rutina de interrupción	83
			3.3.8.2	Algoritmo MPPT P&O	83
			3.3.8.3	Controlador PI	83
			3.3.8.4	Subfunciones con prioridad de interrupción	83
4	Res	ultados	de simula	ación y experimentales	84
	4.1	Result	ados conti	rol FCS-MPC	84
		4.1.1	Resultad	los del lazo interno de corriente	85
		4.1.2	Resultad	los del lazo externo de tensión y el lazo interno de corriente	90
		4.1.3	Resultad	los de simulac <mark>ión incorporand</mark> o un algoritmo MPPT	93
	4.2	Result	ados conti	rol FCS-MPC a frecuencia cuasi-constante	96
		4.2.1	Lazo int	erno de corriente	98
			4.2.1.1	Lazo interno de corriente modo buck	99
			4.2.1.2	Lazo interno de corriente modo boost	102
		4.2.2	Banda d	e histéresis	107
			4.2.2.1	Banda de histéresis modo buck	107
			4.2.2.2	Banda de histéresis modo boost	109
		4.2.3	Lazo ext	terno de tensión	110
			4.2.3.1	Lazo externo de tensión modo buck	111
			4.2.3.2	Lazo externo de tensión modo boost	114
		4.2.4	Resultad	los del seguimiento del máximo punto de potencia	117
			4.2.4.1	Comportamiento del sistema ante cambios de irradiancia	118
			4.2.4.2	Comportamiento del sistema ante condiciones de sombreado	
				parcial	119
5	Con	clusion	es		121

Bibliografía

Anexos

128

123

Índice de figuras

Clasificación de los métodos de control predictivo utilizados en la electróni-	-
ca de potencia [1]	2
Curvas características I-V de un panel solar para diferentes niveles de	
irradiación [5].	5
Curvas características P-V de un panel fotovoltaico para diferentes ni-	
veles de irradiación [5].	5
Curvas características I-V de un panel solar para diferentes niveles de	
temperatura [5]	6
Características P-V para diferentes niveles de temperatura [5]	6
Generación de dos máximos locales por la activación de un diodo de	
bypass	7
Diagrama de bloques general para un sistema de MPPT	7
Sistema fotovoltaico de carga de batería y curva I-V de su módulo solar	
sin (un peak de potencia) y bajo condición de sombreado parcial (dos	
peaks de potencia).	8
Regulador lineal básico [13]	10
(a) Convertidor DC-DC básico conmutado, (b) circuito equivalente para	
conmutación, (c) forma de onda de la tensión de salida [13]	11
(a) Topología convertidor reductor o buck, (b) circuito equivalente cuan-	
do el interruptor se encuentra cerrado, (c) circuito equivalente cuando el	
interruptor se encuentra abierto	12
(a) Topología convertidor elevador o boost, (b) circuito equivalente cuan-	
do el interruptor se encuentra cerrado, (c) circuito equivalente cuando el	
interruptor se encuentra abierto	13
	Clasificación de los métodos de control predictivo utilizados en la electróni- ca de potencia [1]

Figura 1.13	(a) Topología convertidor buck-boost, (b) circuito equivalente cuando	
	el interruptor se encuentra cerrado, (c) circuito equivalente cuando el	
	interruptor se encuentra abierto.	14
Figura 1.14	(a) Topología convertidor Ćuk, (b) circuito equivalente cuando el inte-	
	rruptor se encuentra abierto, (c) circuito equivalente cuando el interrup-	
	tor se encuentra cerrado.	16
Figura 1.15	(a) Topología convertidor SEPIC, (b) circuito equivalente cuando el in-	
	terruptor se encuentra cerrado, (c) circuito equivalente cuando el inte-	
	rruptor se encuentra abierto.	17
Figura 1.16	Topología del convertidor versátil buck-boost	18
Figura 1.17	Configuración del convertidor para el estado boost	20
Figura 1.18	Configuración del convertidor para el estado común	21
Figura 1.19	Configuración del convertidor para el estado buck	21
Figura 1.20	Corrientes y voltajes establecidos para la obtención del modelo conmu-	
	tado del convertidor v <mark>ersátil buck-bo</mark> ost	22
Figura 1.21	Forma de onda de la señal moduladora, portadora y el ciclo de trabajo	
	resultante de una estrategia de conmutación basada en PWM	26
Figura 1.22	Forma de onda del ciclo de trabajo al establecer una estrategia de control	
	con frecuencia de conmutación cuasi-constante	27
Figura 1.23	Forma de onda del ciclo de trabajo al establecer una estrategia de control	
	de frecuencia variable.	27
Figura 1.24	Diagrama de flujo del algoritmo P&O	30
Figura 1.25	Comportamiento de la potencia del panel solar ante cambios en el vol-	
	taje de referencia. a) Comportamiento de la potencia del panel debido al	
	aumento del voltaje. b) Comportamiento de la potencia del panel debido	
	al decremento del voltaje. c) Decremento en la potencia actual del panel	
	debido a un decremento del voltaje en sus terminales. d) Disminución	
	de la potencia del panel debido al aumento del voltaje en sus terminales.	31
Figura 1.26	Valor de la derivada de la potencia con respecto al voltaje	32
Figura 1.27	Diagrama de flujo del algoritmo de conductancia incremental.	33

Figura 1.28	Diagrama de flujo del método de voltaje fraccional de circuito abierto	35
Figura 1.29	Diagrama de flujo del método de corriente fraccionaria de cortocircuito.	36
Figura 1.30	Diagrama propuesto para el desarrollo del proyecto.	40
Figura 2.1	Panel solar con dos diodos de bypass. En (a) circulación de corriente sin	
	sombreado en las celdas. En (b) circulación de corriente con sombreado	
	parcial en una celda. En (c) curva característica I-V del panel solar sin	
	sombreado. En (d) curva característica I-V del panel solar con sombreado.	44
Figura 2.2	Diagrama de bloques simplificado para un MPPT	45
Figura 2.3	Circuito implementado en PSIM para la simulación del algoritmo per-	
	turbar y observar y conductancia incremental	46
Figura 2.4	Circuito implementado para simular la técnica de voltaje fraccional de	
	circuito abierto	47
Figura 2.5	Circuito utilizado para la simulación del método de corriente fracciona-	
	ria de cortocircuito.	47
Figura 2.6	Comportamiento del voltaje y la corriente del panel fotovoltaico imple-	
	mentando un algoritmo P&O con cambios de referencia de 0.2 V	48
Figura 2.7	Comportamiento del voltaje y la corriente del panel fotovoltaico imple-	
	mentando un algoritmo P&O con cambios de referencia de 2 V	49
Figura 2.8	Comportamiento de la corriente, el voltaje y la potencia del panel foto-	
	voltaico implementando un algoritmo de conductancia incremental con	
	cambios de referencia de 0.4 V	50
Figura 2.9	Comportamiento de la corriente, el voltaje y la potencia del panel foto-	
	voltaico implementando un algoritmo de voltaje fraccional de circuito	
	abierto.	51
Figura 2.10	Comportamiento de la corriente, el voltaje y la potencia del panel foto-	
	voltaico implementando un algoritmo de corriente fraccionaria de cor-	
	tocircuito	52
Figura 3.1	Esquema básico del control predictivo [29]	55
Figura 3.2	Cálculos y mediciones que realiza el algoritmo de control predictivo [29].	56

Figura 3.3	Forma de onda de la corriente del inductor al establecer un control de	
	corriente de valle [32]	57
Figura 3.4	Forma de onda de la corriente del inductor al establecer un control de	
	corriente de peak [32]	58
Figura 3.5	Forma de onda de la corriente del inductor al establecer un control de	
	corriente de valor promedio [32]	59
Figura 3.6	Implementación de una estrategia de control de doble lazo	60
Figura 3.7	Controlador PI integrado al esquema de control para el MPPT [34]	61
Figura 3.8	Predicción del valor de la variable de interés a partir de distintas confi-	
	guraciones que adopta el convertidor versátil buck-boost	63
Figura 3.9	Control de corriente de peak cuando el tiempo de cálculo excede el tiem-	
	po de permanencia del estado. Se observa un incremento del periodo de	
	conmutación <mark></mark>	65
Figura 3.10	Control de corriente de valle cuando el tiempo de cálculo y de obten-	
	ción de señales son suficientes para mantener frecuencia de conmuta-	
	ción constante.	66
Figura 3.11	Forma de onda de un control de corriente de peak a frecuencia cuasi-	
	constante de 100 kHz.	67
Figura 3.12	Forma de onda de un control de corriente de valle a frecuencia cuasi-	
	constante de 100 kHz.	68
Figura 3.13	Forma de onda de un control de corriente de valle a frecuencia cuasi-	
	constante de 100 kHz.	69
Figura 3.14	Forma de onda de un control de corriente de peak a frecuencia cuasi-	
	constante de 100 kHz.	70
Figura 3.15	Banda de histéresis implementada para el convertidor en modo buck. El	
	ancho se fija en función del tiempo de permanencia t_2	71
Figura 3.16	Banda de histéresis implementada para el convertidor en modo boost.	
	El ancho se fija en función del tiempo de permanencia t_2	72
Figura 3.17	Control digital multilazo implementado con un convertidor versátil buck-	
	boost	73

Figura 3.18	Diagrama de bode de la respuesta en frecuencia del lazo externo imple-	
	mentado para los cuatro modos de operación.	77
Figura 3.19	Diagrama de flujo de la implementación digital del controlador del lazo	
	interno de corriente	79
Figura 3.20	Diagrama de flujo del controlador digital implementado	82
Figura 4.1	Esquema de la configuración utilizada para pruebas de control de corriente.	85
Figura 4.2	Respuesta simulada del lazo interno de corriente basado en FCS-MPC.	
	Corriente de referencia igual a 6 A. Voltaje de entrada igual a 17 V y	
	voltaje de salida igual a 12 V	86
Figura 4.3	Comportamiento de la corriente de entrada del convertidor y estados	
	conmutados que utilizados para seguir la referencia de corriente	86
Figura 4.4	Resultados de simulación del lazo interno de corriente aplicado a un	
	convertidor versátil buck-boost. Voltaje de entrada 8 V y voltaje de sali-	
	da 12 V	87
Figura 4.5	Comportamiento de la corriente de entrada y salida aplicando un cambio	
	de referencia de corriente de 3 A a 6 A. Voltaje de entrada 17 V y voltaje	
	de salida 12 V	88
Figura 4.6	Comportamiento de la corriente de entrada y salida aplicando un cambio	
	de referencia de corriente de 6 A a 3 A. Voltaje de entrada 17 V y voltaje	
	de salida 12 V	88
Figura 4.7	Comportamiento de la corriente de entrada y salida aplicando un cambio	
	de referencia de corriente de 3 A a 6 A. Voltaje de entrada 8 V y voltaje	
	de salida 12 V	89
Figura 4.8	Comportamiento de la corriente de entrada y salida aplicando un cambio	
	de referencia de corriente de 6 A a 3 A. Voltaje de entrada 8 V y voltaje	
	de salida 12 V	89
Figura 4.9	Esquema de la configuración utilizada para pruebas del lazo interno de	
	corriente y el lazo externo de tensión.	90

Figura 4.10	Comportamiento del voltaje y la corriente de entrada del convertidor	
	cuando el voltaje de referencia cambia de 16 V a 17 V	91
Figura 4.11	Comportamiento del voltaje y la corriente de entrada del convertidor	
	cuando el voltaje de referencia cambia de 17 V a 16 V	91
Figura 4.12	Comportamiento del voltaje y la corriente de entrada del convertidor	
	cuando el voltaje de referencia cambia de 8 V a 9 V	92
Figura 4.13	Comportamiento del voltaje y la corriente de entrada del convertidor	
	cuando el voltaje de referencia cambia de 9 V a 8 V	92
Figura 4.14	Esquema de la configuración utilizada para pruebas del algoritmo MPPT.	93
Figura 4.15	Comportamiento del controlador bajo condiciones ideales del panel so-	
	lar y luego frente a disminución de irradincia.	94
Figura 4.16	Comportamiento del controlador ante una condición de sombreado par-	
	cial del panel solar co <mark>n disminución</mark> de irradiancia	95
Figura 4.17	Comportamiento del controlador ante un cambio de sombreado parcial	
	a máxima capacidad del panel fotovoltaico	96
Figura 4.18	Configuración experimental para la realización de las diferentes pruebas	
	experimentales: (a) Convertidor versátil buck-boost, (b) Controlador di-	
	gital de señales, (c) fuente de alimentación DC de entrada, (d) Fuente	
	de alimentación DC de salida, (e) Carga electrónica DC en modo de	
	voltaje constante, (f) Osciloscopio, (g) Fuente de alimentación auxiliar	
	para la DSC, sensores de corriente y voltaje de convertidor y controla-	
	dores MOSFET, (h) Sondas diferenciales de voltaje, (i) Fuente de ali-	
	mentación auxiliar para sondas diferenciales de voltaje, (j) Laptop para	
	programar la DSC, (k) Protección de acrílico para probar circuitos	97
Figura 4.19	Esquema de la configuración utilizada para pruebas del lazo interno de	
	corriente.	98

Figura 4.20	Respuestas simuladas (a), (c) y experimentales (b), (d) de la corrien-	
	te de entrada del control predictivo de corriente a frecuencia cuasi-	
	constante cuando la referencia de corriente es i_{ref} : (a,b) es igual a 3 A,	
	(c,d) es igual a 6 A. El convertidor opera en modo buck ($V_g = 18$ V y	
	$V_o = 12$ V). CH1: i_g (2 A/div), CH2: i_o (5 A/div), CH3: V_g (16 V/div),	
	CH4: V_o (16 V/div)	99
Figura 4.21	Respuestas simuladas (a),(c) y experimentales (b),(d) de la corriente de	
	entrada del control predictivo de corriente a frecuencia cuasi-constante	
	cuando la referencia es i_{ref} : (a,b) cambios desde 3 A a 6 A, y (c,d) desde	
	6 A a 3 A. El convertidor opera en modo buck ($V_g = 18$ V y $V_o = 12$ V).	
	CH1: <i>i</i> _g (2 A/div), CH2: <i>i</i> _o (5 A/div), CH3: <i>V</i> _g (16 V/div), CH4: <i>V</i> _o (16	
	V/div)	100
Figura 4.22	Respuestas simuladas (a),(c) y experimentales (b),(d) respuestas de la	
	corriente de entrada del control predictivo de corriente a frecuencia	
	cuasi-constante cuando la referencia es i_{ref} : (a,b) es igual a 2 A, (c,d)	
	es igual a 4 A. El convertidor opera en modo buck ($V_g = 24$ V y	
	$V_o = 12$ V). CH1: i_g (2 A/div), CH2: i_o (5 A/div), CH3: V_g (16 V/div),	
	CH4: V_o (16 V/div)	101
Figura 4.23	Respuestas simuladas (a),(c) y experimentales (b),(d) respuestas de la	
	corriente de entrada del control predictivo de corriente a frecuencia	
	cuasi-constante cuando la referencia es i_{ref} : (a,b) cambios desde 2 A	
	a 4 A, y (c,d) desde 4 A a 2 A. El convertidor opera en modo buck	
	$(V_g = 24 \text{ V y } V_o = 12 \text{ V})$. CH1: i_g (2 A/div), CH2: i_o (5 A/div), CH3:	
	V_g (16 V/div), CH4: V_o (16 V/div)	102
Figura 4.24	Respuestas simuladas (a),(c) y experimentales (b),(d) de la corriente de	
	entrada del control predictivo de corriente a frecuencia cuasi-constante	
	cuando la referencia es i_{ref} : (a,b) es igual a 3 A, (c,d) es igual a 6 A. El	
	convertidor opera en modo boost ($V_g = 9$ V y $V_o = 12$ V). CH1: i_g (2	
	A/div), CH2: i_o (5 A/div), CH3: V_g (16 V/div), CH3: V_o (16 V/div)	103

Figura 4.25 Respuestas simuladas (a),(c) y experimentales (b),(d) de la corriente de entrada del control predictivo de corriente a frecuencia cuasi-constante cuando la referencia es i_{ref} : (a,b) cambios desde 3 A a 6 A, y (c,d) desde 6 A a 3 A. El convertidor opera en modo boost ($V_g = 9$ V y $V_o = 12$ V). CH1: ig (2 A/div), CH2: io (5 A/div), CH3: Vg (16 V/div), CH3: Vo (16 104 Figura 4.26 Respuestas simuladas (a),(c) y experimentales (b),(d) de la corriente de entrada del control predictivo de corriente a frecuencia cuasi-constante cuando la referencia es i_{ref} : (a,b) es igual a 2 A, (c,d) es igual a 4 A. El convertidor opera en modo boost ($V_q = 6$ V y $V_o = 12$ V). CH1: i_q (2 A/div), CH2: i_o (5 A/div), CH3: V_g (16 V/div), CH3: V_o (16 V/div). . . 105 Figura 4.27 Respuestas simuladas (a),(c) y experimentales (b),(d) de la corriente de entrada del control predictivo de corriente a frecuencia cuasi-constante cuando la referencia es i_{ref} : (a,b) cambios desde 3 A a 6 A, y (c,d) desde 6 A a 3 A. El convertidor opera en modo boost ($V_g = 6$ V y $V_o = 12$ V). CH1: ig (2 A/div), CH2: io (5 A/div), CH3: Vg (16 V/div), CH3: Vo (16 V/div). 106 Figura 4.28 Respuestas experimentales de la corriente de entrada del control predictivo de corriente a frecuencia cuasi-constante cuando la referencia es i_{ref} 2 A. El convertidor opera en modo buck. CH1: i_g (2 A/div), CH2: i_o (5 A/div), CH3: V_g (16 V/div), CH4: V_o (16 V/div). 108 Figura 4.29 Respuesta experimental del control de banda de histéresis en modo buck para una referencia de 2 A. El convertidor opera en modo boost. CH1: i_g (2 A/div), CH2: i_o (5 A/div), CH3: V_g (16 V/div), CH4: V_o (16 V/div). 110 Figura 4.30 Esquema de la configuración utilizada para pruebas del lazo interno de 111

Figura 4.31	Respuestas simuladas (a), (c), (e) y experimentales (b), (d), (f) del con-	
	trol predictivo de corriente a frecuencia cuasi-constante en conjunto con	
	un controlador PI digital cuando la referencia de voltaje de entrada es	
	v_{ref} : (a,b) es igual a 16 V, (c,d) es igual a 17 V y (e,f) es igual a 18 V	
	. El convertidor opera en modo buck ($V_o = 12$ V). CH1: i_g (2 A/div),	
	CH2: i_o (5 A/div), CH3: V_g (10 V/div), CH4: V_o (10 V/div)	112
Figura 4.32	Respuestas simuladas (a), (c) y experimentales (b), (d) del control pre-	
	dictivo de corriente a frecuencia cuasi-constante en conjunto con un	
	controlador PI digital cuando la referencia de voltaje de entrada v_{ref}	
	cambia (a,b) desde 16 V a 17 V, y (c,d) desde 17 V a 16 V. El converti-	
	dor opera en modo buck. CH1: i_g (2 A/div), CH2: i_o (5 A/div), CH3: V_g	
	(10 V/div), CH4: V_o (10 V/div)	113
Figura 4.33	Respuestas simuladas (a), (c) y experimentales (b), (d) del control pre-	
	dictivo de corriente a frecuencia cuasi-constante en conjunto con un	
	controlador PI digital cuando la referencia de voltaje de entrada v_{ref}	
	cambia (a,b) desde 17 V a 18 V, y (c,d) desde 18 V a 17 V. El converti-	
	dor opera en modo buck. CH1: i_g (2 A/div), CH2: i_o (5 A/div), CH3: V_g	
	(10 V/div), CH4: V_o (10 V/div)	114
Figura 4.34	Respuestas simuladas (a), (c), (e) y experimentales (b), (d), (f) del con-	
	trol predictivo de corriente a frecuencia cuasi-constante en conjunto con	
	un controlador PI digital cuando la referencia de voltaje de entrada es	
	v_{ref} : (a,b) es igual a 8 V, (c,d) es igual a 9 V y (e,f) es igual a 10 V. El	
	convertidor opera en modo boost ($V_o = 12$ V). CH1: i_g (2 A/div), CH2:	
	i_o (5 A/div), CH3: V_g (10 V/div), CH4: V_o (10 V/div)	115
Figura 4.35	Respuestas simuladas (a), (c) y experimentales (b), (d) del control pre-	
	dictivo de corriente a frecuencia cuasi-constante en conjunto con un	
	controlador PI digital cuando la referencia de voltaje de entrada v_{ref}	
	cambia (a,b) desde 8 V a 9 V, y (c,d) desde 9 V a 8 V. El convertidor	
	opera en modo boost. CH1: i_g (2 A/div), CH2: i_o (5 A/div), CH3: V_g (10	
	V/div), CH4: V_o (10 V/div).	116

Figura 4.36	Respuestas simuladas (a), (c) y experimentales (b), (d) del control pre-	
	dictivo de corriente a frecuencia cuasi-constante en conjunto con un	
	controlador PI digital cuando la referencia de voltaje de entrada v_{ref}	
	cambia (a,b) desde 9 V a 10 V, y (c,d) desde 10 V a 9 V. El convertidor	
	opera en modo boost. CH1: i_g (2 A/div), CH2: i_o (5 A/div), CH3: V_g (10	
	V/div), CH4: V _o (10 V/div).	117
Figura 4.37	Esquema de la configuración utilizada para pruebas del lazo interno de	
	corriente, el lazo externo de tensión y el algoritmo MPPT	118
Figura 4.38	Desempeño del controlador ante cambios de irradiancia. Gráficas de po-	
	tencia, eficiencia, corriente y voltaje en los bornes del panel	119
Figura 4.39	Desempeño del controlador bajo condiciones de sombreado. Gráficas de	
	potencia, eficiencia, corriente y voltaje en los bornes del panel	120
Eigung 1	Vista facatal de la DSC atiliza de	100
Figura I		128
Figura 2	Vista superior de DSC utilizada	129
Figura 3	Circuito de potencia d <mark>el convertidor</mark> versátil buck-boost	131

Índice de tablas

Tabla 1.1	Componentes del convertidor versátil buck-boost	19
Tabla 1.2	16 configuraciones que puede adoptar el convertidor versátil buck-boost.	20
Tabla 2.1	Parámetros del panel seleccionado para realizar simulaciones de algo-	
	ritmos MPPT	43
Tabla 3.1	Valores de voltaje y corriente de referencia para evaluar el ancho de	
	banda del controlador del lazo interno de corriente	74
Tabla 3.2	Valores CF (expresad <mark>o en H</mark> z) y <mark>PM (</mark> expresado en grados) de los modos	
	de operación del controlador del lazo interno de corriente	74
Tabla 3.3	Frecuencia de cruce por cero (expresado en Hz) y margen de fase (ex-	
	presado en grados) del controlador del lazo externo de tensión para el	
	modo buck inverso.	75
Tabla 3.4	Frecuencia de cruce por cero (expresado en Hz) y margen de fase (ex-	
	presado en grados) del controlador del lazo externo de tensión para el	
	modo buck	75
Tabla 3.5	Frecuencia de cruce por cero (expresado en Hz) y margen de fase (ex-	
	presado en grados) del controlador del lazo externo de tensión para el	
	modo boost inverso.	76
Tabla 3.6	Frecuencia de cruce por cero (expresado en Hz) y margen de fase (ex-	
	presado en grados) del controlador del lazo externo de tensión para el	
	modo boost	76
Tabla 3.7	Valores CF (expresado en Hz) y PM (expresado en grados) del controla-	
	dor del lazo externo de tensión para los cuatro modos de operación del	
	controlador.	77

Tabla 4.1	Descripción y modelo de equipos utilizados para el desarrollo de prue-	
	bas experimentales	98

