Índice

1.	Intr	oducci	ón	1
	1.1.	Introd	ucción General	1
	1.2.	Objeti	VOS	3
		1.2.1.	Objetivo general	3
		1.2.2.	Objetivos específicos	3
	1.3.	Alcanc	es y Limitaciones	3
	1.4.	Metod	ología	3
	1.5.	Estado	e del Arte	4
		1.5.1.	Sistema eléctrico de potencia	4
		1.5.2.	Convertidores de potencia	5
		1.5.3.	Dispositivos semiconductores	9
		1.5.4.	Controladores	11
ე	Con	wortid	or Matricial Monofésico	17
4.	2 1		rtider Matricial Monofásico	17
	2.1.	2 1 1		18
		2.1.1.	Modele matemático	10
		2.1.2.	Estados válidos de conmutación del SPMC	10
		2.1.0.		10
3.	Top	ologías	s Derivadas del Convertidor Matricial Monofásico	21
	3.1.	Conver	rtidor Matricial Modular	21
		3.1.1.	Topología	22
		3.1.2.	Modelo matemático	23
	3.2.	Conver	rtidor Matricial Multi-Modular	23
		3.2.1.	Topología	24
		3.2.2.	Modelo matemático	24
4.	Con	trol P	redictivo Basado en Modelos para el Convertidor Matricial	
	Moi	nofásic	0	26
	4.1.	Esquer	na de Control	27
	4.2.	Model	o de Predicción	28
	4.3.	Funció	n de Costos	30
	4.4.	Algorit	tmo Implementado	31
	4.5.	Result	ados de Simulación	32
		4.5.1.	Estado estacionario	32
		4 5 9	Estado transionto	36

		4.5.3.	Análisis de THD y error absoluto medio	38		
5.	Control Predictivo Basado en modelos para el Convertidor Matricial					
	Mod	lular		44		
	5.1.	Esquei	ma de Control	44		
	5.2.	Algori	tmo Implementado	45		
	5.3.	Model	o de Predicción	45		
	5.4.	Funció	$n \text{ de Costos} \dots \dots$	46		
	5.5.	Result	ados de Simulación	46		
		5.5.1.	Estado estacionario	46		
		5.5.2.	Estado transiente	51		
		5.5.3.	Análisis de THD y error absoluto medio	54		
6.	Con	trol P	redictivo Basado en Modelos para el Convertidor matricial			
-	Multi-Modular					
	6.1.	Esquei	ma de Control	61		
	6.2.	Algori	tmo Implementado	62		
	6.3.	Model	o de Predicción	63		
	6.4.	Funció	$n \text{ de Costos} \dots \dots$	63		
	6.5.	Result	ados de Simulación	63		
		6.5.1.	Estado estacionario	63		
		6.5.2.	Estado transiente	75		
		6.5.3.	Análisis de THD y error absoluto medio	77		
7.	Con	clusio	nes	85		
	7.1.	Trabaj	jo Futuro	86		
8.	Ane	xos		89		
	8.1.	Código	os y Simulación Matlab/Simulink	89		
		8.1.1.	Convertidor matricial monofásico	89		
		8.1.2.	Convertidor matricial modular	95		
		8.1.3.	Convertidor matricial multi-modular	103		
	8.2.	Conmu	ıtación Segura	123		

Índice de Figuras

1.	Diagrama de bloques de un sistema electrónico de potencia	5
2.	Clasificación de convertidores AC/AC	6
3.	Topologías convertidores AC/AC con almacenador de energía: a) VSI,	
	b) CSI, c) Fuente Z y d)Fuente Quasi-Z	7
4.	Diagrama de bloques de un convertidor indirecto.	8
5.	Diagrama de bloques de un convertidor directo.	8
6.	Símbolo: a) diodo, b) diodo schottky, c) diodo led, d) diodo zener, e)	
	diodo corriente constante, f) diodo varactor.	10
7.	Símbolo tiristor: a) SCR, b) TRIAC/DIRAC, c) GTO, d) RCT	11
8.	Símbolo transistor: a) BJT, b) MOSFET, c) IGBT, d) MCT	11
9.	Métodos de control y modulación para convertidores matriciales	12
10.	Modulación SPWM	13
11.	Vectores (a) de voltaje y (b) de corriente	14
12.	Topología del convertidor matricial monofásico directo.	18
13.	Topología de convertidor matricial modular	22
14.	Topología convertidor matricial multi-modular	24
15.	Esquema de control predictivo de corriente para el convertidor matricial	
	modular	28
16.	Representación modelo matemático de la carga	29
17.	Diagrama de flujo de controlador predictivo basado en modelos para	
	convertidor matricial monofásico	31
18.	Corriente en la carga al aplicar MPC a SPMC con una frecuencia de	
	muestreo de 10kHz	33
19.	Voltaje en la carga al aplicar MPC a SPMC con una frecuencia de mues-	
	treo de 10 kHz	33
20.	Corriente en la carga al aplicar MPC a SPMC con una frecuencia de	
	muestreo de 20kHz	34
21.	Voltaje en la carga al aplicar MPC a SPMC con una frecuencia de mues-	
	treo de 20kHz	34
22.	Corriente en la carga al aplicar MPC a SPMC con una frecuencia de	
	muestreo de 40kHz	35
23.	Voltaje en la carga al aplicar MPC a SPMC con una frecuencia de mues-	
	treo de 40kHz	35
24.	Corriente en la carga al aplicar MPC a SPMC con cambio escalón en la	
	referencia y una frecuencia de muestreo de 10kHz	37

25.	Corriente en la carga al aplicar MPC a SPMC con cambio escalón en la	
	referencia y una frecuencia de muestreo de 20kHz	37
26.	Corriente en la carga al aplicar MPC a SPMC con cambio escalón en la	
	referencia y una frecuencia de muestreo de 40kHz	38
27.	Distorsión armónica total de: a) corriente en la carga y b) voltaje en la	
	carga, al aplicar MPC a SPMC con $f_s=10$ kHz	41
28.	Distorsión armónica total de: a) corriente en la carga y b) voltaje en la	
	carga, al aplicar MPC a SPMC con $f_s=20$ kHz	41
29.	Distorsión armónica total de: a) corriente en la carga y b) voltaje en la	
	carga, al aplicar MPC a SPMC con f_s =40kHz	42
30.	Esquema de control predictivo de corriente para el convertidor matricial	
	$modular \dots \dots$	44
31.	Diagrama de flujo de controlador predictivo basado en modelos para	
	convertidor matricial modular $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	45
32.	Corriente en la carga al aplicar MPC a 3x1-MMC con una frecuencia de	
	muestreo de 10kHz	47
33.	Voltaje fase A en la carga al aplicar MPC a 3x1-MMC con una frecuencia	
	de muestreo de 10kHz	47
34.	Voltajes en la carga al aplicar MPC a 3x1-MMC con una frecuencia de	
	muestreo de 10kHz	48
35.	Corriente en la carga al aplicar MPC a 3x1-MMC con una frecuencia de	
	muestreo de 20kHz	48
36.	Voltaje fase A en la carga al aplicar MPC a 3x1-MMC con una frecuencia	
	de muestreo de 20kHz	49
37.	Voltajes en la carga al aplicar MPC a 3x1-MMC con una frecuencia de	
	muestreo de 20kHz	49
38.	Corriente en la carga al aplicar MPC a 3x1-MMC con una frecuencia de	
	muestreo de 40kHz	50
39.	Voltaje fase A en la carga al aplicar MPC a $3x1$ -MMC con una frecuencia	
	de muestreo de 40kHz	50
40.	Voltajes en la carga al aplicar MPC a 3x1-MMC con una frecuencia de	
	muestreo de 40kHz	51
41.	Corriente en la carga al aplicar MPC a 3x1-MMCcon cambio escalón en	
	la referencia y una frecuencia de muestreo de 10kHz	52
42.	Corriente en la carga al aplicar MPC a 3x1-MMC con cambio escalón en	
	la referencia y una frecuencia de muestreo de 20kHz	52

43.	Corriente en la carga al aplicar MPC a $3x1$ -MMC con cambio escalón en	
	la referencia y una frecuencia de muestreo de 40kHz	53
44.	Distorsión armónica total de: a) corriente en la carga fase A y b) voltaje	
	en la fase A, al aplicar MPC a 3x1-MMC con $f_s=10$ kHz	55
45.	Distorsión armónica total de: a) corriente en la carga fase B y b) voltaje	
	en la fase B , al aplicar MPC a 3x1-MMC con f_s =10kHz	55
46.	Distorsión armónica total de: a) corriente en la carga fase C y b) voltaje	
	en la fase C, al aplicar MPC a 3x1-MMC con $f_s=10$ kHz	56
47.	Distorsión armónica total de: a) corriente en la carga fase $A \neq b$) voltaje	
	en la fase A, al aplicar MPC a 3x1-MMC con $f_s=20$ kHz	56
48.	Distorsión armónica total de: a) corriente en la carga fase B y b) voltaje	
	en la fase B, al aplicar MPC a 3x1-MMC con $f_s=20$ kHz	57
49.	Distorsión armónica total de: a) corriente en la carga fase C y b) voltaje	
	en la fase C, al aplicar MPC a 3x1-MMC con $f_s=20$ kHz	57
50.	Distorsión armónica total de: a) corriente en la carga fase $A \neq b$) voltaje	
	en la fase A, al aplicar MPC a $3x1$ -MMC con $f_s=40$ kHz	58
51.	Distorsión armónica total de: a) corriente en la carga fase B y b) voltaje	
	en la fase B, al aplicar MPC a 3x1-MMC con f_s =40kHz	58
52.	Distorsión armónica total de: a) corriente en la carga fase C y b) voltaje	
	en la fase C, al aplicar MPC a 3x1-MMC con f_s =40kHz	59
53.	Esquema de control predictivo de corriente para el convertidor matricial	
	multi-modular	61
54.	Diagrama de flujo de controlador predictivo basado en modelos para	
	convertidor matricial multi-modular	62
55.	Corrientes en la carga al aplicar MPC a 3x3-MMMC con una frecuencia	
	de muestreo de 10kHz	64
56.	Voltajes en la carga al aplicar MPC a 3x3-MMMC con una frecuencia	
	de muestreo de 10kHz	64
57.	Voltaje medido a) módulo $A1$, b) módulo 21 , c) módulo $A3$ y d) salida	
	fase A al aplicar MPC 3x3-MMMC a frecuencia de muestreo de 10kHz.	65
58.	Voltaje medido a) módulo $B1$, b) módulo $B2$, c) módulo $B3$ y d) salida	
	fase B al aplicar MPC 3x3-MMMC a frecuencia de muestreo de 10kHz.	65
59.	Voltaje medido a) módulo $C1$, b) módulo $C2$, c) módulo $C3$ y d) salida	
	fase C al aplicar MPC 3x3-MMMC a frecuencia de muestreo de 10kHz.	66
60.	Corrientes en la carga al aplicar MPC a 3x3-MMMC con una frecuencia	
	de muestreo de 20kHz	66

61.	Voltajes en la carga al aplicar MPC a 3x3-MMMC con una frecuencia	
	de muestreo de 20kHz	67
62.	Voltaje medido a) módulo $A1$, b) módulo $A2$, c) módulo $A3$ y d) salida	
	fase A al aplicar MPC 3x3-MMMC a frecuencia de muestreo de 20kHz.	67
63.	Voltaje medido a) módulo $B1$, b) módulo $B2$, c) módulo $B3$ y d) salida	
	fase B al aplicar MPC 3x3-MMMC a frecuencia de muestreo de 20kHz.	68
64.	Voltaje medido a) módulo $C1$, b) módulo $C2$, c) módulo $C3$ y d) salida	
	fase C al aplicar MPC 3x3-MMMC a frecuencia de muestreo de 20kHz.	68
65.	Corrientes en la carga al aplicar MPC a 3x3-MMMC con una frecuencia	
	de muestreo de 40kHz	69
66.	Voltajes en la carga al aplicar MPC a 3x3-MMMC con una frecuencia	
	de muestreo de 40kHz	69
67.	Voltaje medido a) módulo $A1$, b) módulo $A2$, c) módulo $A3$ y d) salida	
	fase A al aplicar MPC 3x3-MMMC a frecuencia de muestreo de 40kHz.	70
68.	Voltaje medido a) módulo $B1$, b) módulo $B2$, c) módulo $B3$ y d) salida	
	fase B al aplicar MPC 3x3-MMMC a frecuencia de muestreo de 40kHz.	70
69.	Voltaje medido a) módulo $C1$, b) módulo $C2$, c) módulo $C3$ y d) salida	
	fase C al aplicar MPC 3x3-MMMC a frecuencia de muestreo de 40kHz.	71
70.	Corrientes en la carga al aplicar MPC a 3x3-MMMC con una frecuencia	
	de muestreo de 10kHz y referencia de 300A.	72
71.	Voltajes en la carga al aplicar MPC a 3x3-MMMC con una frecuencia	
	de muestreo de 10kHz y referencia de 300A.	73
72.	Voltaje medido a) módulo A1 b) módulo A2, c) módulo A3 y d) salida	
	fase A al aplicar MPC a 3x3-MMMC a frecuencia de muestreo de 10kHz	
	y referencia de 300A	73
73.	Voltaje medido a) módulo $B1$ b)módulo $B2,$ c) módulo $B3$ y d) salida	
	fase B al aplicar MPC a 3x3-MMMC a frecuencia de muestreo de 10kHz	
	y referencia de 300A	74
74.	Voltaje medido a) módulo $C1$ b) módulo $C3,$ c) módulo $C3$ y d) salida	
	fase ${\it C}$ al aplicar MPC a 3x3-MMMC a frecuencia de muestreo de 10kHz	
	y referencia de 300A	74
75.	Corriente en la carga al aplicar MPC a 3x3-MMMC con cambio escalón	
	en la referencia y una frecuencia de muestreo de 10kHz	75
76.	Corriente en la carga al aplicar MPC a 3x3-MMMC con cambio escalón	
	en la referencia y una frecuencia de muestreo de 20kHz	76
77.	Corriente en la carga al aplicar MPC a 3x3-MMMC con cambio escalón	
	en la referencia y una frecuencia de muestreo de 40kHz	76

78.	Distorsión armónica total de: a) corriente en la carga fase A y b) voltaje	
	en la fase A, al aplicar MPC a 3x3-MMMC con $f_s=10$ kHz	78
79.	Distorsión armónica total de: a) corriente en la carga fase B y b) voltaje	
	en la fase B , al aplicar MPC a 3x3-MMMC con f_s =10kHz	78
80.	Distorsión armónica total de: a) corriente en la carga fase C y b) voltaje	
	en la fase C, al aplicar MPC a 3x3-MMMC con $f_s=10$ kHz	79
81.	Distorsión armónica total de: a) corriente en la carga fase A y b) voltaje	
	en la fase A, al aplicar MPC a 3x3-MMMC con $f_s=20$ kHz	79
82.	Distorsión armónica total de: a) corriente en la carga fase B y b) voltaje	
	en la fase B , al aplicar MPC a 3x3-MMMCcon $f_s=20$ kHz	80
83.	Distorsión armónica total de: a) corriente en la carga fase C y b) voltaje	
	en la fase C, al aplicar MPC a 3x3-MMMC con $f_s=20$ kHz	80
84.	Distorsión armónica total de: a) corriente en la carga fase $A \neq b$) voltaje	
	en la fase A, al aplicar MPC a 3x3-MMMC con f_s =40kHz	81
85.	Distorsión armónica total de: a) corriente en la carga fase B y b) voltaje	
	en la fase B, al aplicar MPC a 3x3-MMMC con f_s =40kHz	81
86.	Distorsión armónica total de: a) corriente en la carga fase C y b) voltaje	
	en la fase C, al aplicar MPC a 3x3-MMMC con f_s =40kHz	82
87.	Distorsión armónica total de: a) corriente en la carga fase $A \neq b$) voltaje	
	en la fase A, al aplicar MPC a 3x3-MMMC con $f_s=10$ kHz y referencia	
	de 300A	82
88.	Distorsión armónica total de: a) corriente en la carga fase B y b) voltaje	
	en la fase B, al aplicar MPC a 3x3-MMMC con $f_s=10$ kHz y referencia	
	de 300A	83
89.	Distorsión armónica total de: a) corriente en la carga fase C y b) voltaje	
	en la fase C, al aplicar MPC a 3x3-MMMC con $f_s=10$ kHz y referencia	
	de 300A.	83
90.	Topología del convertidor matricial monofásico directo.	87
91.	Topología del convertidor matricial monofásico directo.	87
92.	Topología del convertidor matricial monofásico directo.	88
93.	Esquema principal y sub-sistemas simulación para SPMC	89
94.	Contenido de sub-sistema convertidor de potencia	90
95.	Contenido de sub-sistema celda SPMC	90
96.	Contenido de sub-sistema controlador	91
97.	Configuración bloque Source A1	91
98.	Esquema principal y sub-sistemas simulación para 3x1-MMC	95
99.	Configuración bloque Source $A1, A2$ y $A3$	96

100.	Contenido de sub-sistema M1)6
101.	Contenido de sub-sistema M2)7
102.	Contenido de sub-sistema M3)7
103.	Contenido de sub-sistema Controlador A)8
104.	Contenido de sub-sistema Controlador B)8
105.	Contenido de sub-sistema Controlador C)8
106.	Contenido de sub-sistema celda SPMC A)9
107.	Contenido de sub-sistema celda SPMC B)9
108.	Contenido de sub-sistema cel da SPMC C)()
109.	Esquema principal y sub-sistemas simulación para 3x3-MMC 10)3
110.	Contenido de sub-sistema Fase A)4
111.	Configuración bloques Source A1, A2 y A3 10)4
112.	Contenido de sub-sistema celda SPMC $A1$)5
113.	Contenido de sub-sistema celda SPMC $A2$)5
114.	Contenido de sub-sistema celda SPMC $A3$)6
115.	Contenido de sub-sistema controlador A)6
116.	Contenido de sub-sistema: a) $A1$, b) $A2$ y c) A)7
117.	Contenido de sub-sistema Fase B)8
118.	Configuración bloques Source B1, B2 y B3)8
119.	Contenido de sub-sistema celda SPMC textitB1)9
120.	Contenido de sub-sistema celda SPMC textitB2)9
121.	Contenido de sub-sistema celda SPMC textitB3 11	0
122.	Contenido de sub-sistema controlador textitB 11	0
123.	Contenido de sub-sistema: a) textitB1, b) textitB2 y c) textitB 11	1
124.	Contenido de sub-sistema Fase textitC	12
125.	Configuración bloques Source B1, B2 y B3	12
126.	Contenido de sub-sistema celda SPMC <i>C1</i>	13
127.	Contenido de sub-sistema celda SPMC C2	3
128.	Contenido de sub-sistema celda SPMC C3	4
129.	Contenido de sub-sistema controlador C	4
130.	Contenido de sub-sistema: a) $C1$, b) $C2$ y c) $C3$	15
131.	Estado inicial $(i_o > 0)$ 12	24
132.	Paso N°1 $(i_o > 0)$	25
133.	Paso N°2 $(i_o > 0)$	25
134.	Paso N°3 $(i_o > 0)$	26
135.	Paso N°4 $(i_o > 0)$	26
136.	Estado inicial $(i_o < 0)$ 12	27

137.	Paso N°1 $(i_o < 0)$	127
138.	Paso N°2 $(i_o < 0)$	128
139.	Paso N°3 $(i_o < 0)$	128
140.	Paso N°4 $(i_o < 0)$	129
141.	Diagrama estrategia de cuadro pasos $(i_o > 0)$	129
142.	Diagrama estrategia de cuadro pasos $(i_o < 0)$	130

Índice de Tablas

1.	Niveles de voltajes de entrada	13
2.	Comparación entre métodos de control y modulación para convertidores	
	matriciales	16
3.	Nomenclatura de la topología del SPMC	19
4.	Estados válidos del SPDMC	20
5.	Parámetros implementados en simulación	32
6.	Tiempos de transición de MPC a SPMC	38
7.	Error absoluto medio al aplicar MPC a SPMC	40
8.	Distorsión armónica total de corriente y voltaje en la carga al aplicar	
	MPC a SPMC.	42
9.	Tiempos de transición de MPC a 3x1-MMC	53
10.	Error absoluto medio al aplicar MPC a 3x1-MMC	54
11.	Distorsión armónica total de corriente y voltaje en la carga al aplicar	
	MPC a 3x1-MMC	59
12.	Tiempos de transición de MPC a 3x3-MMMC	77
13.	Error absoluto medio al aplicar MPC a 3x3-MMMC	77
14.	Distorsión armónica total de corriente y voltaje en la carga al aplicar	
	MPC a 3x3-MMMC	84
15.	Estados válidos de la conmutación de 4 pasos	124