ÍNDICE

CAPÍTUL	O 1: INTRODUCCIÓN1
1.1	Antecedentes y motivación2
1.2	Objetivos4
	1.2.1 Objetivo General
	1.2.2 Objetivos Específicos
1.3	Alcances
1.4	Metodologías y herramientas utilizadas5
1.5	Resultados esperados
CAPÍTUL	O 2: MARCO TEÓRICO
2.1	Depósitos de relave7
2.2	Embalse de relaves7
	2.2.1 Componentes principales de un embalse de relaves
2.3	Fallas de depósitos de relave9
2.4	Revisión de posibles mecanismos de fallas de depósitos de relave10
	2.4.1 Rebalse (Overtopping):
	2.4.2 Filtraciones y erosión interna (<i>Piping</i>):11
	2.4.3 Inestabilidad de Talud12
2.5	Normativa Vigente
	2.5.1 Decreto N°24814
	2.5.2 Decreto N°5014
2.6	Estabilidad de taludes
	2.6.1 Factor de seguridad (FS)
2.7	Métodos de cálculo para análisis de estabilidad de taludes16
	2.7.1 Estabilidad de taludes en 3D17
	2.7.2 Método de equilibrio límite (MEL)
	2.7.3 Método de elementos finitos (MEF)
2.8	Modelos Constitutivos
	2.8.1 Modelo lineal elástico
	2.8.2 Modelo Finn
	2.8.3 Modelo Hardening Soil (HS)
	2.8.4 Modelo Hardening Soil con pequeñas deformaciones (HS-Small)23
2.9	Análisis pseudoestáticos
	2.9.1 Expresión de Saragoni

		2.9.2 Manual Chileno de carreteras	27
	2.10	Análisis Dinámico	27
		2.10.1 Amortiguamiento	28
		2.10.2 Amortiguamiento de Rayleigh	28
		2.10.3 Método de Newmark	29
	2.11	Peligro Sísmico	30
		2.11.1 Terremotos Intraplaca Oceánica	31
		2.11.2 Terremotos Interplaca	31
		2.11.3 Mapa de Peligro sísmico Probabilístico	31
		2.11.4 Leyes de Atenuación	32
CAPI	TUL	O 3: METODOLOGIA	33
-	3.1	Objetivo específico 1:	34
		3.1.1 Revisión bibliográfica	34
-	3.2	Objetivo específico 2:	34
		3.2.1 Levantamiento de información	34
		3.2.2 Muestreo	34
		3.2.3 Ensayos de laboratorio	35
		3.2.4 Gravedad específica	37
-	3.3	Objetivo específico 3:	40
		3.3.1 Sismo de Estudio	40
-	3.4	Objetivo específico 4:	40
		3.4.1 Autocad Civil 3D	40
		3.4.2 Slide 2	41
ź	3.5	Objetivo específico 5	41
	3.6	Objetivo específico 6	41
		3.6.1 RS2	.41
		3.6.2 RS3	.42
-	3.7	Objetivo específico 7:	42
		3.7.1 Análisis de Estabilidad	43
CAPÍ	ΓUL	O 4: ANÁLISIS DE RESULTADOS	44
2	4.1	Antecedentes geológicos, geotécnicos y estructurales del embalse de	relaves de
		Mina Chépica	45
		4.1.1 Generalidades del deposito	45
		4.1.2 Topografía	46

	4.1.3	Transporte y Descarga del relave	47
	4.1.4	Captación y desvió de la quebrada la Hoyada	47
	4.1.5	Sistema de Drenaje	48
	4.1.6	Material Muro, embalse de mina Chépica	48
	4.1.7	Geología del lugar	50
	4.1.8	Relave	55
4.2	Nivel	freático	56
4.3	Carac	terización geotécnica	56
	4.3.1	Límites de Atterberg	57
	4.3.2	Análisis Granulométrico	58
	4.3.3	Gravedad específica	58
	4.3.4	Ensayo Proctor	59
	4.3.5	Ensayo Triaxial	60
4.4	Sismo	o de Estudio	67
	4.4.1	Terremoto del Maule 2010	67
	4.4.2	Atenuación sísmica	69
	4.4.3	Análisis de respuesta de sitio	70
4.5	Métoc	do de Equilibrio límite (MEL)	74
	4.5.1	Modelamiento en Slide 2	74
4.6	Mode	lamiento numérico vía elementos finitos	81
	4.6.1	Tamaño de Malla	
	4.6.2	Input sísmico	
	4.6.3	Condiciones de borde dinámicas	
	4.6.4	Amortiguamiento de Rayleigh	
	4.6.5	Modelo estático en RS3	
	4.6.6	Modelos estáticos en RS2	90
	4.6.7	Modelos Dinámicos en RS2	91
CAPITUL	.O 5: C	CONCLUSIÓN	
6 REFERI	ENCIA	.S	113
7 ANEXC)S		117

ÍNDICE DE FIGURAS

Figura 1.1:Imagen del colapso del tranque de Mina Las Palmas
Figura 1.2: Ubicación geográfica del embalse de relaves de Mina Chépica
Figura 2.1: Embalse de relaves de Mina Chépica construido con material de empréstito de
zonas aledañas 2021
Figura 2.2: Componentes principales de un embalse de relaves
Figura 2.3: Principales fallas históricas de depósitos de relaves a nivel mundial10
Figura 2.4: Falla por rebalse, presa Auburn, Cofferdam
Figura 2.5: Falla por erosión interna
Figura 2.6: Falla por inestabilidad de talud
Figura 2.7: Mecanismos de falla de depósitos de relave al año 2016
Figura 2.8:Falla de un talud15
Figura 2.9: Métodos de cálculo de estabilidad de taludes
Figura 2.10: Relación hiperbólica entre el esfuerzo y deformación
Figura 2.11; Determinación del valor de <i>Eoedref</i> en ensayos edométricos
Figura 2.12: Superficie de fluencia del modelo HS en el espacio de esfuerzos principales 23
Figura 2.13: Comportamiento característico rigidez-deformación del suelo
Figura 2.14: Parámetros de rigidez en el modelo HS Small
Figura 2.15: Zonificación sísmica en Chile central
Figura 2.16 Gráfico de la relación de amortiguación, amortiguación del 20% a 2 y 8 Hz .29
Figura 2.17: Fuentes sismogénicas principales en Chile central, letra "a" representa fuente
interplaca tipo thrust, "b" intraplaca de profundidad intermedia, "c" cortical y "d" outer-rise
. El color azulado representa la posición esquemática de la placa Nazca, y en color verde la
placa Sudamericana
Figura 2.18: Mapa de peligro sísmico probabilístico conjunto, incorporando fuente
interplaca e interplaca oceánica
Figura 3.1: Ubicación georreferenciada de los puntos de muestreo de la Memoria y de
estudios previos
Figura 3.2: Partes de la Célula Triaxial Universidad de Talca
Figura 3.3: Estado de esfuerzos en ensayo CID
Figura 3.4: Estado de esfuerzos en ensayo CIU
Figura 3.5: Ubicación de los puntos de medición en el estudio sísmico
Figura 3.6: Imagen referencial de los modelos en 2D en el software Slide 2
Figura 3.7: Imagen referencial de los modelos en 2D en el software RS242
Figura 3.8: Imagen del modelo en 3D en el software RS342
Figura 3.9: Metodología general del proyecto43
Figura 4.1: Imagen panorámica del depósito de estudio45

Figura 4.2: Plano adaptado de Google Earth de las principales instalaciones de la Mina	
Chépica	.46
Figura 4.3: Superficie reconstruida del emplazamiento del embalse de relaves de Mina	
Chépica	.46
Figura 4.4: Transporte de relaves por tubería de HDPE por gravedad	.47
Figura 4.5: Canal de desvío de la quebrada la Hoyada	.48
Figura 4.6: Muro del embalse de relaves de mina chépica	. 49
Figura 4.7: Mapa geológico del área de estudio, delimitado en color verde se presenta la	
zona de estudio	.51
Figura 4.8: Columna estratigráfica del área de Mina Chépica	. 52
Figura 4.9: Estrato de roca y suelo visualizado a partir de la extracción del material del	
muro	.53
Figura 4.10: Imagen del relave depositado en la cubeta del depósito	. 55
Figura 4.11: Nivel freático asociado a un perfil del embalse de relaves de Mina Chépica .	. 56
Figura 4.12: Gráficas del límite líquido para las muestras del suelo de fundación y muro	.57
Figura 4.13 Figura 4.13: Curva granulométrica del suelo de fundación, muro y relave	. 58
Figura 4.14: Curva de compactación para el suelo	. 59
Figura 4.15: Curva de compactación para el muro	. 60
Figura 4.16: Probeta remoldeada del Material Muro de Empréstito	.61
Figura 4.17: Instalación de la probeta remoldeada en la célula triaxial	.61
Figura 4.18: Proceso de Saturación de la probeta en el equipo triaxial)	. 62
Figura 4.19: Comprobación de la saturación de la probeta a partir del coeficiente B	. 63
Figura 4.20: Etapa de consolidación de la probeta en el equipo triaxial	. 64
Figura 4.21: Etapa de corte de la probeta del muro	. 65
Figura 4.22: Probeta fallada del muro de empréstito	. 65
Figura 4.23: Envolvente de falla para el muro de empréstito	.66
Figura 4.24: Envolvente de falla para el Suelo de Fundación	.66
Figura 4.25: Hipocentro del terremoto del 27 de febrero de 2010	. 68
Figura 4.26: Registros de aceleraciones para las tres direcciones del terremoto del 27 de	
febrero medidas en la estación de la UTFSM de Valparaíso	. 68
Figura 4.27: Registro sísmico escalado	.70
Figura 4.28: Columna de suelo en el modelamiento en Deepsoil.	.72
Figura 4.29: Registro de aceleraciones medidas en el estrato de suelo (a), Andesita lixivia	ada
(b) y Andesita Z1 (c)	.72
Figura 4.30: Respuesta espectral del terremoto del 27F	.73
Figura 4.31: Ubicación de los perfiles seleccionados para los análisis 2D	.74
Figura 4.32: Características del modelo en SLIDE 2	.75
Figura 4.33: Factores de seguridad para la primera etapa del depósito, considerando los tr	res
perfiles (análisis estático)	.76
Figura 4.34: Figura 4.34: Factores de seguridad para la segunda etapa del depósito,	
considerando los tres perfiles (análisis estático)	.76

Figura 4.35: Factores de seguridad para la tercera etapa del depósito, considerando los tres
perfiles. (análisis estático)76
Figura 4.36: Factores de seguridad para los análisis pseudoestático por zonificación sísmica
en la primera etapa del depósito, considerando los tres perfiles77
Figura 4.37: Factores de seguridad para los análisis pseudoestático por zonificación sísmica
en la segunda etapa del depósito, considerando los tres perfiles
Figura 4.38: Factores de seguridad para los análisis pseudoestático por zonificación sísmica
en la segunda etapa del depósito, considerando los tres perfiles
Figura 4.39: Factores de seguridad para los análisis pseudoestático del 27F en la primera
etapa del depósito, considerando los tres perfiles78
Figura 4.40: Factores de para los análisis pseudoestático de la segunda etapa del depósito,
considerando los tres perfiles
Figura 4.41: Factores de seguridad para los análisis pseudoestático de la tercera etapa del
depósito, considerando los tres perfiles78
Figura 4.42: Factores de seguridad para la reducción de la porosidad del dren en la tercera
etapa del depósito, considerando los tres perfiles79
Figura 4.43: Factores de seguridad para la reducción de la porosidad del dren en la tercera
etapa del depósito, considerando los tres perfiles79
Figura 4.44: Gráfica de los factores de seguridad en Slide 2. Línea en color rojo representa
un factor de seguridad critico (FS=1)80
Figura 4.45: Factores de seguridad para el caso en que exista colmatación del sistema de
drenaje. Línea en color rojo representa un factor de seguridad critico (FS=1)81
Figura 4.46: Parámetro E50 ref del modelo HS-Small para el muro
Figura 4.47: Parámetro E50 ref del modelo HS-Small para el suelo
Figura 4.48: Modelo dinámico considerando Base rígida86
Figura 4.49: Representación de la condición de borde absorbente
Figura 4.50: Representación de la condición de borde de transmisión
Figura 4.51: Condiciones de borde dinámicas en el modelo RS287
Figura 4.52: Espectros de respuesta para el registro escalado del 27F
Figura 4.53: Amortiguamientos de Rayleigh en modelos RS288
Figura 4.54: Contornos de desplazamientos totales en el modelo 3D
Figura 4.55: Corte transversal del modelo en 3D. Desplazamiento en x (a), asentamientos
(b) y desplazamientos totales (c)90
Figura 4.56: Desplazamientos verticales (a), desplazamientos horizontales (b) y
desplazamientos totales en la simulación estática del perfil central del depósito91
Figura 4.57: Modelo dinámico del perfil central del depósito92
Figura 4.58: Desplazamientos totales trascurridos 40 segundos del evento sísmico, para un
amortiguamiento promedio de 3% (a), 2%(b) y 1%(c)93
Figura 4.59: Desplazamientos totales trascurridos 50 segundos del evento sísmico, para un
amortiguamiento promedio de 3% (a), 2%(b) y 1%(c)94

Figura 4.60: Desplazamientos totales trascurridos los 72 segundos de duración del evento
sísmico, para un amortiguamiento promedio de 3% (a), 2%(b) y 1%(c)95
Figura 4.61: Asentamiento registrados una vez finalizado el sismo, para un
amortiguamiento promedio de 3% (a), 2%(b) y 1%(c)96
Figura 4.62: Asentamiento en el coronamiento del embalse de relaves
Figura 4.63:Desplazamientos horizontales en el muro, para un amortiguamiento promedio
de 3% (a), 2%(b) y 1%(c)
Figura 4.64: Desplazamientos horizontales para los ´puntos 8 y 6
Figura 4.65: Elevaciones del coronamiento antes y después del sismo
Figura 4.66: Aceleración medida en el estrato de roca de la Andesita Z1, para un
amortiguamiento promedio de 3% (a), 2%(b) y 1% (c)
Figura 4.67: Figura 4.67: Aceleraciones horizontales en la base del muro (Punto 6), para un
amortiguamiento promedio de 3% (a), 2%(b) y 1%(c)
Figura 4.68: Aceleración horizontal en el coronamiento del muro (Punto 2), para un
amortiguamiento promedio de 3% (a), 2%(b) y 1%(c)102
Figura 4.69: Contornos de exceso de presión de poros al final de la carga sísmica.
Amortiguamiento de 3% (a), 2%(b) y 1%(c)
Figura 4.70: Resultados de la evaluación de licuefacción del punto del relave cercano al
muro: (a) Presión de poros, y (b) Relación de exceso de presión de poros (Ru) en el
transcurso del sismo
Figura 4.71: Resultados de la evaluación de licuefacción del punto en la cola del relave: (a)
Presión de poros, y (b) Relación de exceso de presión de poros (Ru) en el transcurso del
sismo104
Figura 4.72: Contornos de desplazamientos del perfil central con elevación del nivel
freático. Desplazamientos verticales (a) y desplazamientos horizontales (b)105
Figura 4.73: Registros de desplazamientos medidos en puntos de monitoreo en el muro 106
Figura 4.74: Exceso de presiones de poro considerando la elevación del nivel freático 106
Figura 4.75: Resultados de la evaluación de licuefacción del punto en la base del muro: (a)
Presión de poros, y (b) Relación de exceso de presión de poros (Ru) en el transcurso del
sismo
Figura 7.1: Muestra roleada para análisis granulométrico
Figura 7.2: Límite líquido en la cuchara de Casagrande120
Figura 7.3: Ensayo para determinar la Gravedad específica
Figura 7.4: Suelo compactado por Proctor modificado123
Figura 7.5: Resultados triaxial CID del muro (p - q)129
Figura 7.6: Resultados triaxial CID del muro (ε - q)130
Figura 7.7: Resultados triaxial CID del muro (ε - εν)
Figura 7.8: Resultados triaxial CIU del muro (p - q)131
Figura 7.9: Resultados triaxial CIU del muro ($\varepsilon - q$)
Figura 7.10: Resultados triaxial CIU del muro ($\varepsilon - \Delta u$)

Figura 7.11: Resultados triaxial CIU del Suelo (p - q)	
Figura 7.12: Resultados triaxial CIU del Suelo (ε - q)	
Figura 7.13: Resultados triaxial CIU del Suelo ($\varepsilon - \Delta u$)	
Figura 7.14: Degradación de la rigidez al corte	
Figura 7.15: Amortiguamiento de suelo	
Figura 7.16: Resistencia al corte del suelo	145

ÍNDICE DE TABLAS

Tabla 2.1: Desencadenantes comunes y principales causas de falla.	13
Tabla 2.2: Parámetros modelo lineal elástico	19
Tabla 2.3:Parámetros modelo Hardening soil (HS)	23
Tabla 2.4: Parámetros del modelo HS Small	25
Tabla 2.5: Coeficiente máximo efectivo de aceleración	27
Tabla 2.6: Leyes de atenuación para determinar las aceleraciones máximas	32
Tabla 3.1: Coordenadas geográficas de los 3 puntos de muestreo de la Memoria	35
Tabla 3.2: Series de tamices para análisis granulométrico	36
Tabla 4.1: Parámetros del suelo y muro asociados a estudios previos	49
Tabla 4.2: Parámetros de la Andesita lixiviada	53
Tabla 4.3: Parámetros de la Andesita porfídica Z1	54
Tabla 4.4: Parámetros de la Andesita porfídica Z2	54
Tabla 4.5: Resumen de los parámetros obtenidos del levantamiento de información para	el
relave	55
Tabla 4.6 : Resultados límites de Atterberg	57
Tabla 4.7: Gravedad específica determinada para los materiales	58
Tabla 4.8: Resumen ensayo Proctor modificado al suelo	59
Tabla 4.9:Resumen ensayo Proctor modificado al muro	59
Tabla 4.10:Resumen de los ensayos realizados en esta investigación para los materiales	
analizados	67
Tabla 4.11: Aceleraciones máximas asociadas a las tres direcciones del terremoto del 27	de
febrero medidas en la estación de la UTFSM de Valparaíso	69
Tabla 4.12: Parámetros para las leyes de atenuación	69
Tabla 4.13: Aceleraciones máximas estimadas en roca para diferentes ubicaciones	69
Tabla 4.14: Características de la columna de suelo de la zona de estudio	71
Tabla 4.15: PGA asociado a cada estrato	73
Tabla 4.16: Resumen de los factores de seguridad en Slide 2	80
Tabla 4.17: Resumen de los factores de seguridad para el para el caso en que exista	
colmatación del sistema de drenaje	81
Tabla 4.18: Modelos definidos en RS2 y RS3 para cada material	82
Tabla 4.19: Parámetros para los materiales del Suelo y Muro	83
Tabla 4.20: Parámetros para los estratos de Roca	84
Tabla 4.21: Parámetros para el material de Relave	84
Tabla 4.22: Tamaño máximo de la malla del modelo	85
Tabla 4.23: Resumen de los desplazamientos máximos registrados por los modelos	
numéricos	108
Tabla 7.1: Curva granulométrica para la muestra del suelo de fundación del embalse de	
relaves de Mina Chépica	117

Tabla 7.2: Curva granulométrica para la muestra del muro del embalse de relaves de Mir	na
Chépica	118
Tabla 7.3: Curva granulométrica para la muestra del relave del embalse de relaves de Mi	na
Chépica	118
Tabla 7.4: Límites de Atterberg para la muestra del suelo de fundación	119
Tabla 7.5:Límites de Atterberg para la muestra del muro del embalse de relaves	119
Tabla 7.6: Determinación de la gravedad específica de las partículas menores a 5mm	120
Tabla 7.7: Determinación de densidad neta de los gruesos	121
Tabla 7.8: Ensayo Proctor modificado del suelo de fundación.	122
Tabla 7.9: Ensayo Proctor modificado del Muro.	122
Tabla 7.10: Resultados ensayo triaxial CID para el Muro. Parte 1	124
Tabla 7.11:Resultados ensayo triaxial CID para el Muro. Parte 2	125
Tabla 7.12: Resultados ensayo triaxial CID para el Muro. Parte 3	126
Tabla 7.13: Resultados ensayo triaxial CID para el Muro. Parte 4	127
Tabla 7.14: Resultados ensayo triaxial CID para el Muro. Parte 5	128
Tabla 7.15: Resultados ensayo triaxial CID para el Muro. Parte 6	129
Tabla 7.16: Resultados ensayo triaxial CIU para el Muro. Parte 1	133
Tabla 7.17: Resultados ensayo triaxial CIU para el Muro. Parte 2	134
Tabla 7.18: Resultados ensayo triaxial CIU para el Muro. Parte 3	135
Tabla 7.19: Resultados ensayo triaxial CIU para el Muro. Parte 4	136
Tabla 7.20: Resultados ensayo triaxial CIU para el Muro. Parte 5	137