AGRADECIMIENTOS	ii
DEDICATORIA	iii
RESUMEN	iv
ÍNDICE GENERAL	V
ÍNDICE DE FIGURAS	ix
ÍNDICE DE TABLAS	xii
CAPÍTULO 1. INTRODUCCIÓN	1
1.1. ANTECEDENTES	2
1.2. DESCRIPCIÓN DEL PROBLEMA	2
1.3. SOLUCIÓN PROPUESTA	3
1.4. OBJETIVOS	5
1.4.1. Objetivo general	5
1.4.2. Objetivos específicos	5
1.5. ALCANCES	5
1.6. METODOLOGÍA	6
1.6.1. Primera etapa	6
1.6.2. Segunda etapa	7
1.6.3. Tercera etapa	8
1.6.4. Cuarta etapa	8
1.6.5. Quinta etapa	9
1.7. RESULTADOS ESPERADOS	9
1.8. ORGANIZACIÓN DEL DOCUMENTO	10
CAPÍTULO 2. MARCO TEÓRICO	12
2.1. RADIACIÓN TÉRMICA	13

ÍNDICE GENERAL

2.1.1.	DEFINICIÓN	13
2.1.2.	ESPECTRO ELECTROMAGNÉTICO	14
2.1.3.	RADIACIÓN DE CUERPO NEGRO	15
2.1.4.	INTENSIDAD DE RADIACIÓN	
2.1.5.	PROPIEDADES RADIATIVAS	19
2.1.6.	LEY DE KIRCHHOFF	21
2.1.7.	RADIACIÓN SOLAR	21
2.1.8.	BALANCE ENERGÉTICO	23
2.2. EC	CUACIONES DE MAXWELL	24
2.2.1.	RCWA	26
2.3. EN	NFRIAMIENTO RADIATIVO	
2.3.1.	DEFINICIÓN	
2.3.2.	ORÍGENES DEL ENFRIAMIENTO RADIATIVO	27
2.3.3.	VENTANA ATMOSFÉRICA	27
2.3.4.	ENFRIAMIENTO RADIATIVO EN LA ACTUALIDAD	
2.3.5.	APLICACIONES	
2.3.6.	ENERGÍA FOTOVOLTAICA	
2.4. PC	DLARITONES MAGNÉTICOS	
2.4.1.	ABSORBEDORES PERFECTOS Y METAMATERIALES	
2.4.2.	MODELO CIRCUITO LC	
CAPÍTULO	3. DESARROLLO DE LA SOLUCIÓN A LA PROBLEMÁTICA	
3.1. DI	EFINICIÓN	
3.2. OI	BTENCIÓN DE PROPIEDAES ÓPTICAS	
3.2.1.	Book of optical constants of solid (Palik, 1998).	
3.2.2.	Refractive index	41

3.2.3.	Artículos científicos	41
3.3. CA	ALCULO DE constante dielectrica	41
3.3.1.	CALCULO REFLEXIÓN, TRANSMISIÓN Y ABSORCIÓN: S4	43
3.3.2.	BENCHMARK 1 (Z. Zhang et al., 2018)	45
3.3.3.	BENCHMARK 2 (Wang & Zhang, 2012)	48
3.4. CI	RCUITO LC – CÓDIGO MATLAB	51
3.5. PC	DTENCIA ENFRIAMIENTO – MATLAB	53
3.6. ES	SQUEMA RESUMEN PROCEDIMIENTO	54
CAPÍTULO	4. ANÁLISIS DE RESULTADOS	56
4.1. DI	EFINICIÓN	57
4.2. ES	STUDIOS DE DISEÑO DE ESTRUCTURAS	58
4.2.1.	PRIMER ESTUDIO	
4.2.2.	SEGUNDO ESTUDIO	60
4.2.3.	TERCER ESTUDIO	63
4.3.4.	CUARTO ESTUDIO	66
4.3.5.	QUINTO ESTUDIO	67
4.3.6.	SEXTO ESTUDIO	69
4.2.7.	SÉPTIMO ESTUDIO	71
4.3. TA	ABLA RESUMEN	73
4.4. DI	SCUSIÓN DE RESULTADOS	73
4.4.1.	ESPECTRO DE EMISIÓN	74
4.4.2.	CIRCUITO LC	77
4.4.3.	POTENCIA DE ENFRIAMIENTO	77
4.4.4.	RESUMEN HALLAZGOS	
CONCLU	USIONES	80

REFERENCIAS	84
ANEXO 1: INTERPOLACIÓN MATERIALES USADOS	87
ANEXO 2: Paneles fotovoltaicos	90
ESTRUCTURA CELDA FOTOVOLTAICA	90
COMPORTAMIENTO DE LA LUZ EN UNA CELDA	93
ESTRUCTURA PANEL FOTOVOLTAICO	94

ÍNDICE DE FIGURAS

Figura 2-1: Espectro electromagnético. FUENTE: (Kreith et al., 2012)15
Figura 2-2: Potencia de radiación temperaturas. FUENTE:(Kreith et al., 2012)17
Figura 2-3: Emisividad de distintos materiales según su longitud de onda. FUENTE:(Cengel,
2011)19
Figura 2-4: Diagrama esquemático reflexión, transmisión y absorción. FUENTE:(Kreith et al.,
2012)
Figura 2-5: Espectro solar y absorción de distintas moléculas en la atmosfera. FUENTE:
(Modest, 2003)
Figura 2-6: Esquema de los flujos de calor que ocurren en las superficies terrestres. B.
Espectro solar (rojo) y espectro de radiación terrestre (azul). FUENTE:(Yin et al., 2020)28
Figura 2-7: Eficiencia vs temperatura en un panel de perovskita CH3NH3PbI3.
FUENTE:(Mesquita et al., 2019)
Figura 2-8: Procesos de absorción, emisión y reflexión que ocurren al recibir energía del sol.
FUENTE:(D. Zhao et al., 2019)
Figura 2-9:Celda experimental propuesta: A la derecha (línea negra), el espectro de emisión de
la celda experimental, superpuesta con el espectro solar y la ventana atmosférica. A la derecha
la composición de la estructura estudiada. FUENTE:(D. Zhao et al., 2019)32
Figura 2-10: Panel fotovoltaico sin SiC (Izquierda) y con SiC (derecha). FUENTE:(Cai et al.,
2019)
Figura 2-11: Absorción obtenida a partir de las celdas de la figura 2-15. La línea roja
corresponde a la celda con SiC y la línea puntuada a la celda sin SiC. FUENTE:(Cai et al.,
2019)
Figura 2-12: Celda fotovoltaica y su circuito LC asociado. FUENTE:(Z. M. Zhang, 2020)35
Figura 3-1: Tabla con propiedades ópticas del telurio de cadmio. FUENTE:(Palik, 1998)40
Figura 3-2: Gráfica de propiedades ópticas del telurio de cadmio. FUENTE: (Palik, 1998)40
Figura 3-3: Interpolación realizada en Matlab para las constantes dieléctricas real e imaginaria
del carburo de Silicio. FUENTE: Elaboración propia43
Figura 3-4: Interfaz código programa S4. FUENTE: Elaboración propia

Figura 3-5: Validación código realizado en software S4 a partir de una celda de perovskita.
FUENTE: Elaboración propia45
Figura 3-6: Estructura celda para realizar el benchmark 1. FUENTE:(Z. Zhang et al., 2018).46
Figura 3-7: Reflexión (línea azul) y absorción (línea roja) versus longitud de onda producid
por la estructura propuesta. FUENTE: (Z. Zhang et al., 2018)47
Figura 3-8: Resultados obtenidos de la simulación usando el programa S4 (línea negra), datos
obtenidos de la figura 3-7 (línea azul). FUENTE: Elaboración propia48
Figura 3-9: Estructura propuesta en el artículo. FUENTE: (Wang & Zhang, 2012)49
Figura 3-10: Gráfica de longitud de onda versus emitancia de la estructura propuesta (línea
roja). FUENTE: (Wang & Zhang, 2012)50
Figura 3-11 Resultados obtenidos de la simulación usando el programa S4 (línea negra), datos
obtenidos de la figura 3-10 (línea azul). FUENTE: Elaboración propia
Figura 3-12: Gráfica de ancho de tira de metal versus longitud de onda y versus emitancia.
Mientras más claro es el sector, la emitancia es mayor. En los triángulos verdes se marca el
sector donde ocurre la resonancia por polaritones magnéticos. FUENTE: (Wang & Zhang,
2012)
Figura 3-13: Gráfica de ancho de tira de metal versus longitud de onda. La linea azul
representa la referencia y los puntos magenta los resultados obtenidos con el código.
FUENTE: Elaboración propia53
Figura 3-14: Diagrama de flujo simplificado del procedimiento para diseñar una estructura.
FUENTE: Elaboración propia55
Figura 4-1: Espectro de emisión/absorción con distintos ángulos de incidencia para la primera
nanoestructura estudiada. FUENTE: Elaboración propia59
Figura 4-2: Gráfico de factor de llenado versus peak de absorción en la nanoestructura a partir
del modelo del circuito LC. FUENTE: Elaboración propia61
Figura 4-3: Espectro de emisión/absorción con distintos ángulos de incidencia para la segunda
nanoestructura estudiada. FUENTE: Elaboración propia62
Figura 4-4: Gráfico espesor de la capa del material dieléctrico (SiO2) versus peak de absorción
en la nanoestructura a partir del modelo del circuito LC. FUENTE: Elaboración propia64
Figura 4-5: Espectro de emisión/absorción con distintos ángulos de incidencia para la tercera
nanoestructura estudiada. FUENTE: Elaboración propia65

Figura 4-6: Espectro de emisión/absorción con distintos ángulos de incidencia para la cuarta
nanoestructura estudiada. FUENTE: Elaboración propia67
Figura 4-7: Estructura usada en el caso de estudio. FUENTE:(Cai et al., 2019)68
Figura 4-8: Espectro de emisión/absorción con distintos ángulos de incidencia para la quinta
nanoestructura estudiada. FUENTE: Elaboración propia69
Figura 4-9: Espectro de emisión/absorción con distintos ángulos de incidencia para la sexta
nanoestructura estudiada. FUENTE: Elaboración propia71
Figura 4-10: Espectro de emisión/absorción con distintos ángulos de incidencia para una capa
de tungsteno, usada como séptimo caso de estudio. FUENTE: Elaboración propia72
Figura 4-11: Espectro solar (amarillo), ventana atmosférica (azul), espectro emisión cuerpo
negro a 300K (línea puntuada), emisión ideal de un enfriador radiativo (línea roja).
FUENTE:(Li & Fan, 2019)74

ÍNDICE DE TABLAS

Tabla 4.1 Medidas estructura usada como primer estudio. FUENTE: Elaboración propia58
Tabla 4.2 Medidas iniciales de nanoestructura usada para estudio a partir del espesor factor de
llenado. FUENTE: Elaboración propia60
Tabla 4.3 Medidas finales de la estructura usada como segundo diseño. FUENTE: Elaboración
propia62
Tabla 4.4 Medidas iniciales de la nanoestructura usada para estudio a partir del espesor de la
tira del dieléctrico. FUENTE: Elaboración propia63
Tabla 4.5 Medidas finales de la estructura usada como tercer diseño. FUENTE: Elaboración
propia65
Tabla 4.6 Medidas nanoestructura articulo Cai, 2009 usada como cuarto estudio. FUENTE:
Elaboración propia
Tabla 4.7 Medidas estructura articulo Cai, 2009 usado como quinto estudio. FUENTE:
Elaboración propia
Tabla 4.8 Medidas finales de la estructura usada como sexto diseño. FUENTE: Elaboración
propia70
Tabla 4.9 Tabla resumen de los resultados obtenidos en todas las pruebas. FUENTE:
Elaboración propia73
Tabla 4.10 Resumen con los resultados y análisis obtenidos. FUENTE. Elaboración propia79