AGRADECIMIENTOS	ii
DEDICATORIA	iii
RESUMEN	iv
ÍNDICE DE FIGURAS	vii
ÍNDICE DE TABLAS	X
CAPITULO 1. INTR	ODUCCIÓN1
1.1 ANTECEDENT	ES Y MOTIVACIÓN2
1.2 DESCRIPCIÓN	DEL PROBLEMA
1.3 SOLUCIÓN PRO	OPUESTA4
1.4 OBJETIVOS	4
1.4.1	Objetivo general4
1.4.2	Objetivos específicos4
1.5 RESULTADOS	ESPERADOS5
1.6 METODOLOGÍ	A5
CAPITULO 2. MAR	CO TEÓRICO7
2.1 MATERIALES	COMPUESTOS
2.1.1	RESINA EPÓXICA11
2.1.2	GRAFENO14
2.1.3	ÓXIDO DE GRAFENO15
2.1.4	NANOTUBOS DE CARBONO15
2.1.5	FIBRA DE CARBONO17
2.2 CARACTERIZA	ACIÓN MECÁNICA19
2.2.1	FRACTURA
2.2.2	DELAMINACIÓN25

ÍNDICE GENERAL

CAPITULO 3.	ANÁLISIS BIBLIOGRÁFICO DE RESULTADOS EXPERIMENTALES
3.1 ESTRAT	EGIA
3.2 FRACTU	JRA
	3.2.1 CANTIDAD DE REFORZAMIENTO
	3.2.2 AGLOMERADOS
3.3 DELAMI	INACIÓN43
CAPITULO 4.	CONCLUSIONES Y APLICACIONES
CONCLUSIONES	57
FRACTURA	
DELAMINACI	ÓN58
APLICACIONE	ES
REFERENCIAS	
ANEXOS	
Anexo 1: Autoc	lave grande utilizado para fabricar las alas de un Boeing 787. Fuente: K.K.
Chawla, 2013	
Anexo 2: Partes	fabricadas de material compuesto en avión comercial Airbus A-380. Fuente:
Hinrichsen 2003	3

ÍNDICE DE FIGURAS

Figura 1.1. Importancia relativa en el uso de los materiales a través del tiempo. Fuente: Ashby
2014
Figura 2.1. Clasificación de los principales tipos de compuestos. Fuente: Elaboración propia8
Figura 2.2. Deformación en la matriz que rodea una fibra sometida a una carga de tracción.
Fuente: William D. Callister, David G. Rethwisch, 20099
Figura 2.3. Esquema de diferentes configuraciones para materiales compuestos; unidireccional,
laminado, fibras cortadas y partículas. Fuente: Ashby, M.F. 201111
Figura 2.4. Estructura química de un polímero epoxi. Fuente: Coussy, 201513
Figura 2.5. Unión química de resina epoxi con agente endurecedor. Fuente: Coussy, 201513
Figura 2.6. Gráfica esquemática de tensión vs deformación de un polímero plástico. Fuente:
Callister William, 200914
Figura 2.7. Alótropos de carbono: a) grafito (3D); b) grafeno (2D); c) nanotubos de carbono
(1D); d) fulereno (0D); Fuente: Vargas 201615
Figura 2.8. Propiedades de varias fibras de reforzamiento. Fuente: Miravete 2012
Figura 2.9. Modos de carga aplicados en una grieta. Fuente: Anderson, Ted. 202019
Figura 2.10. Líneas de fuerzas alrededor de una grieta bajo carga. Fuente: Coussy 201521
Figura 2.11. Geometría de probetas para ensayos. Fuente: ASTM D5045-1422
Figura 2.12. Prueba SENB para modo I de fractura. Fuente: ASTM D5045-1422
Figura 2.13. Muestra de prueba de cuatro apoyos con carga antisimétrica (ASFPB). Fuente:
Ayatollahi, Shadlou y Shokrieh, 201124
Figura 2.14. Probeta de doble viga en voladizo (DCB). Fuente: ASTM D 552826
Figura 2.15. Distancias a considerar en la instalación de los bloques de carga. Fuente: ASTM D
5528
Figura 2.16. Extrapolación en gráfico C13 vs a. Fuente: ASTM D 552828
Figura 3.1 Gráfico de fracción de peso vs energía de deformación en resina epoxi con
MWCNTs, con t correspondiendo a diferentes espesores de interfases. Fuente: Shokrieh y
Zeinedini, 2016

Figura 3.2. Gráfico del módulo de Young vs la fracción másica de SWCNT en dos diferentes
matrices (LDPE y HDPE). Fuente: Oseli et al 2020
Figura 3.3. Gráfico de deformación máxima vs fracción másica de SWCNT en dos matrices
diferentes (LDPE y HDPE). Fuente: Oseli et al 2020
Figura 3.4. Gráfico representativo del comportamiento de 4 investigaciones, referente a la tasa
de liberación de energía de deformación vs la cantidad de refuerzo agregado. Fuente:
Elaboración propia
Figura 3.5. Gráfico de resistencia a la fractura para diferentes configuraciones de SCF/EG/PEI,
respectivamente. Fuente: Sun et al. 2021
Figura 3.6. Representación de los enlaces de hidrogeno entre GO y caucho. Fuente: Wen et al.
2017
Figura 3.7. Resultados experimentales de resistencia y energía liberada en fractura vs porcentaje
de masa de refuerzo, Fuente: Kumar et al. 2020
Figura 3.8. Imágenes TEM de diferentes disposiciones de MWCNT en matriz de policarbonato:
a) aglomerado inicial, b) MWCNT bien dispersos, c) aglomerados secundarios. Fuente: Pegel,
Dötschlag v Detzel 2009
FOISCIRKE Y FEIZOI 2008
Figura 3.9. Imágenes SEM de una aglomeración de GNP, 5000X y 22000X respectivamente de
Figura 3.9. Imágenes SEM de una aglomeración de GNP, 5000X y 22000X respectivamente de ampliación. Fuente: Gapstur 2018
Figura 3.9. Imágenes SEM de una aglomeración de GNP, 5000X y 22000X respectivamente de ampliación. Fuente: Gapstur 201842 Figura 3.10. Gráfico comparativo de energía de delaminación vs longitud de grieta, para
Figura 3.9. Imágenes SEM de una aglomeración de GNP, 5000X y 22000X respectivamente de ampliación. Fuente: Gapstur 201842 Figura 3.10. Gráfico comparativo de energía de delaminación vs longitud de grieta, para material compuesto con espesor de resina epóxica intercalada entre lamina. Fuente: Hojo et al.
Fotschke y Petzol 2008
Fotschke y Petzol 2008
Fotschke y Petzol 2008
Fotschke y Fetzol 2008
Fotschke y Petzol 2008
Fotschke y Fetzol 2008
Figura 3.9. Imágenes SEM de una aglomeración de GNP, 5000X y 22000X respectivamente de ampliación. Fuente: Gapstur 2018
Figura 3.9. Imágenes SEM de una aglomeración de GNP, 5000X y 22000X respectivamente de ampliación. Fuente: Gapstur 2018
Fosciace y Felzoi 2008

ÍNDICE DE TABLAS

Tabla 2.1. Principales polímeros termoestables y termoplásticos. Fuente: Princeton 198812
Tabla 2.2. Ventajas y desventajas de los polímeros. Fuente: Elaboración propia12
Tabla 2.3. Propiedades de resinas epóxicas. Fuente: Gómez 2017.
Tabla 3.1. Tabla comparativa de resultados de prueba de fractura en modo I y modo II, con
diferentes porcentajes de CNT como refuerzo, respecto a dos diferentes matrices. Fuente:
Coussy 2015
Tabla 3.2. Tabla comparativa de resultados de diferentes autores para la tasa de energía de
deformación de compuestos reforzados con nanotubos, según el porcentaje en masa del
refuerzo. Fuente: Elaboración propia
Tabla 3.3. Resultados de diferentes autores sobre la energía de delaminación para la iniciación
y propagación de la grieta, utilizando refuerzos intercalados de termoplásticos en material
compuesto de resina epóxica con fibras de carbono. Fuente: Elaboración propia54
Tabla 4.1. Porcentajes de mejora para los principales nanorefuerzos analizados, con 1% de
concentración en peso para el modo I de fractura y delaminación. Fuente: Elaboración propia.
Tabla 4.2. Ejemplos de piezas fabricadas con material compuesto. Fuente: Elaboración propia.