

CONTROL PREDICTIVO A FRECUENCIA FIJA DE TOPOLOGÍAS BASADAS EN CONVERTIDORES MATRICIALES MONOFÁSICOS

Memoria para optar al título de Ingeniero Civil Mecatrónico

Profesor Guía: Prof. Dr. Marco Rivera

Comité Evaluador:

Prof. Javier Muñoz Prof. Carlos Baier

CONSTANCIA

La Dirección del Sistema de Bibliotecas a través de su encargado Biblioteca Campus Curicó certifica que el autor del siguiente trabajo de titulación ha firmado su autorización para la reproducción en forma total o parcial e ilimitada del mismo.

Curicó, 2023

Control Predictivo a Frecuencia Fija de Topologías Basadas en Convertidores Matriciales Monofásicos

Pablo Andrés López Trujillo

Curicó - Chile

Agradecimientos

- Agradecimiento principal para mis padres, Hortencia Trujillo Galaz y Roberto López Zenteno, quienes han sido los principales responsables para que haya llegado hasta este momento.
- A toda mi familia, tíos, primos, abuelos, con especial mención a mis primas Patricia Molina Trujillo y Natalia Molina Trujillo, personas que en momentos de mi vida prácticamente me adoptaron como a un hermano, y a mi abuela materna, "Mamá Tencha", persona que ha sido de suma importancia a lo largo de mi vida, especialmente en mis primeros años.
- A la gente que me viene acompañando desde hace más de 10 años, como son Miguel y a mi mejor amigo Ignacio.
- Al grupo de laboratorio, a Fabián, Víctor, Ramón, y especialmente a Consuelo y Daniel, con quienes compartí a lo largo de todos estos años y también fueron gran soporte en los momentos más complicados.
- Al Profesor Marco Rivera, por el apoyo brindado durante estos años perteneciendo a su laboratorio.
- A las personas que fueron parte de este proceso, ex compañeros principalmente que tomaron otros caminos pero que fueron también importantes para que hoy pueda estar acá.
- Al Programa FONDECYT Regular a través del proyecto 1191028 y FONDAP SERC Chile 15110019.
- Al Laboratorio de Conversión de Energías y Electrónica de Potencia LCEEP y al Centro Tecnológico de Conversión de Energía a cargo del Prof. Marco Rivera.

Índice

1.	Intr	croducción General									
	1.1.	Introducción									
	1.2.	Objetivos	5								
		1.2.1. General \ldots	5								
		1.2.2. Específicos	5								
	1.3.	Hipótesis	5								
	1.4.	Alcances	5								
	1.5.	Metodología	6								
2.	El C	Convertidor Matricial Monofásico	7								
	2.1.	Circuito de potencia	7								
	2.2.	Modelo matemático	8								
	2.3.	Restricciones de operación	9								
	2.4.	Estados válidos de conmutación	17								
	2.5.	Formas de onda típicas	18								
3.	Тор	ologías Derivadas del Convertidor Matricial Monofásico	20								
	3.1.	Topología con tres celdas	20								
		3.1.1. Circuito de potencia	21								
		3.1.2. Modelo matemático	22								
	3.2.	Topología multinivel con 9 celdas	23								
		3.2.1. Circuito de potencia	23								
		3.2.2. Modelo matemático	25								
4.	Con	trol Predictivo a Frecuencia Fija del Convertidor Matricial Mo-									
	nofá	isico	26								
	4.1.	Esquema de control	26								
	4.2.	Modelo de predicción	27								
	4.3.	Función de costo	28								
	4.4.	Patrón de conmutación	30								
	4.5.	Algoritmo implementado	31								

		4.6.1.	Estado estacionario	33							
		4.6.2.	Estado transiente	40							
		4.6.3.	Discusión	43							
		4.6.4.	Análisis de THD y error absoluto	43							
5.	Con	trol P	redictivo a Frecuencia Fija de las Topologías Derivadas de	1							
	Con	vertid	or Matricial Monofásico	52							
	5.1.	Topolo	ogía con tres celdas	52							
		5.1.1.	Esquema de control	52							
		5.1.2.	Modelo de predicción	53							
		5.1.3.	Función de costo	53							
		5.1.4.	Patrón de conmutación	54							
		5.1.5.	Algotirmo implementado	56							
		5.1.6.	Resultados de simulación	57							
	5.2.	Topolo	ogía multinivel con 9 celdas	79							
		5.2.1.	Esquema de control	79							
		5.2.2.	Modelo de predicción	80							
		5.2.3.	Función de costo	81							
		5.2.4.	Patrón de conmutación	82							
		5.2.5.	Algotirmo implementado	83							
		5.2.6.	Resultados de simulación	85							
6.	Con	clusio	nes y Trabajo Futuro	107							
	6.1.	Conclu	usiones	107							
	6.2.	Traba	jo futuro	108							
7.	Ane	exos		111							
	7.1.	. Control Predictivo a Frecuencia Fija para el Convertidor Matricial Mo-									
		nofásio	co	111							
		7.1.1.	Parámetros del sistema, archivo .m	111							
		7.1.2.	Parámetros del MC, archivo .h	112							
		7.1.3.	Modelo del convertidor en Simulink, bloque S-Function Builder .	112							
	7.2.	Contro	ol Predictivo a Frecuencia Fija para la Topología de Tres Celdas .	117							

	7.2.1.	Parámetros del sistema, archivo .m	117
	7.2.2.	Parámetros del MC, archivo .h	118
	7.2.3.	Modelo del convertidor para Fase A en Simulink, bloque S-Function	
		Builder	119
	7.2.4.	Modelo del convertidor para Fase B en Simulink, bloque S-Function	
		Builder	123
	7.2.5.	${\it Modelo\ del\ convertidor\ para\ Fase\ A\ en\ Simulink,\ bloque\ S-Function}$	
		Builder	126
7.3.	Contro	l Predictivo a Frecuencia Fija para la Topología de Nueve Celdas	130
	7.3.1.	Parámetros del sistema, archivo .m	130
	7.3.2.	Parámetros del MC, archivo .h	131
	7.3.3.	${\it Modelo\ del\ convertidor\ para\ Fase\ A\ en\ Simulink,\ bloque\ S-Function}$	
		Builder	133
	7.3.4.	Modelo del convertidor para Fase B en Simulink, bloque S-Function	
		Builder	140
	7.3.5.	Modelo del convertidor para Fase C en Simulink, bloque S-Function	
		Builder	148
7.4.	Tablas	de estados válidos para topología de nueve cel das $\ .$	156

Índice de Figuras

1.	Diagrama de bloques de un convertidor monofásico directo	8
2.	Topología convertidor matricial monofásico.	8
3.	Cortocircuito en la fuente debido a dos switches encendidos. $\ . \ . \ .$	11
4.	Estado inicial $i_o > 0$	12
5.	Paso 1: Apagar $T_B 1$	12
6.	Paso 2: Encender T_{A2}	13
7.	Paso 3: Quitar el pulso a T_{A1}	14
8.	Paso 4: Encender T_{B2}	14
9.	Estado inicial $i_o > 0$	15
10.	Paso 1: Apagar T_{A1}	15
11.	Paso 2: Encender T_{A2}	16
12.	Paso 3: Quitar el pulso a T_{A1}	17
13.	Paso 4: Encender T_{B2}	17
14.	Señal de corriente entregada por el convertidor matricial monofásico.	19
15.	Circuito simplificado del MMMC-I	21
16.	Circuito simplificado del MMMC-II	24
17.	Esquema de control convertidor matricial monofásico	27
18.	Vectores disponibles para el convertidor matricial monofásico	29
19.	Patrón de conmutación para los vectores óptimos	31
20.	Patrón de conmutación para los vectores óptimos	32
21.	Resultados control predictivo a frecuencia fija convertidor matricial mo-	
	nofásico a 50 [Hz] y 20 [Apk], con tiempo de muestreo de 10 [μ s]	34
22.	Resultados control predictivo a frecuencia fija convertidor matricial mo-	
	nofásico a 50 [Hz] y 50 [Apk], con tiempo de muestreo de 10 [μ s]	35
23.	Resultados control predictivo a frecuencia fija convertidor matricial mo-	
	nofásico a 50 [Hz] y 20 [Apk], con tiempo de muestreo de 25 [μ s]	36
24.	Resultados control predictivo a frecuencia fija convertidor matricial mo-	
	nofásico a 50 [Hz] y 50 [Apk], con tiempo de muestreo de 25 [μ s]	37
25.	Acercamiento del patrón de conmutación	38

26.	Resultados en estado transiente del control predictivo a frecuencia fija,	
	convertidor matricial monofásico a 50 [Hz] y 20 [Apk], con tiempo de	
	muestreo de 10 [μ s]	40
27.	Resultados en estado transiente control predictivo a frecuencia fija con-	
	vertidor matricial monofásico a 50 [Hz] y 20 [Apk], con tiempo de mues-	
	treo de 25 [μ s].	41
28.	THD convertidor matricial monofásico con tiempo de muestreo de 10 $[\mu {\rm s}]$	
	y corriente de 20 [A]	44
29.	THD convertidor matricial monofásico con tiempo de muestreo de 20 $[\mu \mathrm{s}]$	
	y corriente de 20 [A]	45
30.	THD convertidor matricial monofásico con tiempo de muestreo de 50 $[\mu \mathrm{s}]$	
	y corriente de 20 [A]	46
31.	THD convertidor matricial monofásico con tiempo de muestreo de 10 $[\mu \mathrm{s}]$	
	y corriente de 50 [A]. \ldots	47
32.	THD convertidor matricial monofásico con tiempo de muestreo de 20 $[\mu s]$	
	y corriente de 50 [A]. \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots	48
33.	THD convertidor matricial monofásico con tiempo de muestreo de 50 $[\mu \mathrm{s}]$	
	y corriente de 50 [A]. \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots	49
34.	Esquema de control topología con tres celdas.	52
35.	Patrón de conmutación para los vectores óptimos del convertidor matri-	
	cial A	54
36.	Patrón de conmutación para los vectores óptimos del convertidor matri-	
	cial B	55
37.	Patrón de conmutación para los vectores óptimos del convertidor matri-	
	cial C	55
38.	Algoritmo aplicado para la topología de tres celdas	56
39.	Resultados de corriente control predictivo a frecuencia fija aplicado a la	
	topología de tres celdas a 50 [Hz] y 20 [A], con un tiempo de muestreo	
	de 10 $[\mu s]$	59
40.	Resultados de voltaje control predictivo a frecuencia fija aplicado a la	
	topología de tres celdas a 50 [Hz] y 20 [A], con un tiempo de muestreo	
	de 10 $[\mu s]$	60

41.	Resultados de corriente control predictivo a frecuencia fija aplicado a la	
	topología de tres celdas a 50 [Hz] y 50 [A], con un tiempo de muestreo	
	de 10 [μ s]	61
42.	Resultados de voltaje control predictivo a frecuencia fija aplicado a la	
	topología de tres celdas a 50 [Hz] y 50 [A], con un tiempo de muestreo	
	de 10 $[\mu s]$.	62
43.	Resultados de corriente en estado transiente del control predictivo a fre-	
	cuencia fija aplicado a la topología de tres celdas, a 50 [Hz] y 20 [A], con	
	un tiempo de muestreo de 10 $[\mu s]$	63
44.	Resultados de voltaje en estado transiente del control predictivo a fre-	
	cuencia fija aplicado a la topología de tres celdas, a 50 [Hz] y 20 [A], con	
	un tiempo de muestreo de 10 [μ s]	64
45.	THD corrientes control predictivo aplicado a la topología de 3 celdas,	
	con tiempo de muestreo de 10 $[\mu s]$ y corriente de 20 $[Apk]$	67
46.	THD voltajes control predictivo aplicado a la topología de 3 celdas, con	
	tiempo de muestreo de 10 [μ s] y corriente de 20 [Apk]	68
47.	THD corrientes control predictivo aplicado a la topología de 3 celdas,	
	con tiempo de muestreo de 20 $[\mu {\rm s}]$ y corriente de 20 [Apk]	69
48.	THD voltajes control predictivo aplicado a la topología de 3 celdas, con	
	tiempo de muestreo de 20 [μ s] y corriente de 20 [Apk]	70
49.	THD corrientes control predictivo aplicado a la topología de 3 celdas,	
	con tiempo de muestreo de 50 $[\mu {\rm s}]$ y corriente de 20 [Apk]	71
50.	THD voltajes control predictivo aplicado a la topología de 3 celdas, con	
	tiempo de muestreo de 50 [μ s] y corriente de 20 [Apk]	72
51.	THD corrientes control predictivo aplicado a la topología de 3 celdas,	
	con tiempo de muestreo de 10 [μ s] y corriente de 50 [Apk]	73
52.	THD voltajes control predictivo aplicado a la topología de 3 celdas, con	
	tiempo de muestreo de 10 [μ s] y corriente de 50 [Apk]	74
53.	THD corrientes control predictivo aplicado a la topología de 3 celdas,	
	con tiempo de muestreo de 20 $[\mu {\rm s}]$ y corriente de 50 [Apk]	75
54.	THD voltajes control predictivo aplicado a la topología de 3 celdas, con	
	tiempo de muestreo de 20 $[\mu s]$ y corriente de 50 $[Apk]$	76

55.	THD corrientes control predictivo aplicado a la topología de 3 celdas,	
	con tiempo de muestreo de 50 $[\mu s]$ y corriente de 50 $[Apk]$	77
56.	THD voltajes control predictivo aplicado a la topología de 3 celdas, con	
	tiempo de muestreo de 50 $[\mu s]$ y corriente de 50 $[Apk]$	78
57.	Esquema de control Convertidor Matricial Monofásico	79
58.	Patrón de conmutación para los vectores óptimos	82
59.	Algoritmo aplicado para la topología de nueve celdas	84
60.	Resultados de corriente control predictivo a frecuencia fija aplicado a la	
	topología multinivel de 9 celdas a 10 [μ s] y 20 [A]	87
61.	Resultados de voltaje control predictivo a frecuencia fija aplicado a la	
	topología multinivel de 9 celdas a 10 [μ s] y 20 [A]	88
62.	Resultados de corriente control predictivo a frecuencia fija aplicado a la	
	topología multinivel de 9 celdas a 10 [μ s] y 150 [A]	89
63.	Resultados de voltaje control predictivo a frecuencia fija aplicado a la	
	topología multinivel de 9 celdas a 10 [μ s] y 150 [A]	90
64.	Resultados de corriente en estado transiente del control predictivo a fre-	
	cuencia fija aplicado a la topología multinivel de 9 cel das a 50 [Hz] y 20 $$	
	[A]	91
65.	Resultados de voltaje en estado transiente del control predictivo a fre-	
	cuencia fija aplicado a la topología multinivel de 9 cel das a 50 $\left[\mathrm{Hz}\right]$ y 20	
	[A]	92
66.	THD corrientes control predictivo aplicado a la topología de 9 celdas,	
	con tiempo de muestreo de 10 [μ s] y corriente de 20 [Apk]	95
67.	THD voltajes control predictivo aplicado a la topología de 9 celdas, con	
	tiempo de muestreo de 10 [μ s] y corriente de 20 [Apk]	96
68.	THD corrientes control predictivo aplicado a la topología de 9 celdas,	
	con tiempo de muestreo de 20 [μ s] y corriente de 20 [Apk]	97
69.	THD voltajes control predictivo aplicado a la topología de 9 celdas, con	
	tiempo de muestreo de 20 [μ s] y corriente de 20 [Apk]	98
70.	THD corrientes control predictivo aplicado a la topología de 9 celdas,	
	con tiempo de muestreo de 50 [μ s] y corriente de 20 [Apk]	99

THD voltajes control predictivo aplicado a la topología de 9 celdas, con	
tiempo de muestreo de 50 [μ s] y corriente de 20 [Apk]	100
THD corrientes control predictivo aplicado a la topología de 9 celdas,	
con tiempo de muestreo de 10 $[\mu {\rm s}]$ y corriente de 150 [Apk]	101
THD voltajes control predictivo aplicado a la topología de 9 celdas, con	
tiempo de muestreo de 10 [μ s] y corriente de 150 [Apk]	102
THD corrientes control predictivo aplicado a la topología de 9 celdas,	
con tiempo de muestreo de 20 $[\mu {\rm s}]$ y corriente de 15 [Apk]	103
THD voltajes control predictivo aplicado a la topología de 9 celdas, con	
tiempo de muestreo de 20 [μ s] y corriente de 150 [Apk]	104
THD corrientes control predictivo aplicado a la topología de 9 celdas,	
con tiempo de muestreo de 50 [μ s] y corriente de 150 [Apk]	105
THD voltajes control predictivo aplicado a la topología de 9 celdas, con	
tiempo de muestreo de 50 [μ s] y corriente de 150 [Apk]	106
	THD voltajes control predictivo aplicado a la topología de 9 celdas, con tiempo de muestreo de 50 $[\mu s]$ y corriente de 20 $[Apk]$ THD corrientes control predictivo aplicado a la topología de 9 celdas, con tiempo de muestreo de 10 $[\mu s]$ y corriente de 150 $[Apk]$ THD voltajes control predictivo aplicado a la topología de 9 celdas, con tiempo de muestreo de 10 $[\mu s]$ y corriente de 150 $[Apk]$ THD corrientes control predictivo aplicado a la topología de 9 celdas, con tiempo de muestreo de 20 $[\mu s]$ y corriente de 150 $[Apk]$

Índice de Tablas

1.	Estados válidos conmutación de 4 pasos	11
2.	Estados válidos de conmutación del convertidor matricial $3x1$	18
3.	Estados válidos de conmutación de cada convertidor matricial $3 \mathrm{x} 1$	22
4.	Parámetros pruebas control predictivo a frecuencia fija del convertidor	
	matricial monofásico.	33
5.	Resultados porcentaje THD del control predictivo a frecuencia fija en el	
	convertidor matricial monofásico.	50
6.	Resultados porcentaje THD del control predictivo a frecuencia fija en el	
	convertidor matricial monofásico en estado estacionario	51
7.	Resultados porcentaje THD del control predictivo a frecuencia fija en el	
	convertidor matricial monofásico en estado transiente	51
8.	Parámetros pruebas control predictivo a frecuencia fija del convertidor	
	matricial monofásico.	57
9.	Resultados porcentaje THD del control predictivo a frecuencia fija para	
	la topología de tres celdas en el convertidor matricial monofásico	65
10.	Resultados error absoluto de corriente del control predictivo a frecuencia	
	fija aplicado a la topología de tres cel das en estado estacionario. \ldots .	66
11.	Resultados error absoluto de corriente del control predictivo a frecuencia	
	fija aplicado a la topología de tres cel das en estado transiente. \ldots . \ldots	66
12.	Parámetros pruebas control predictivo a frecuencia fija del convertidor	
	matricial monofásico.	85
13.	Resultados porcentaje THD del control predictivo a frecuencia fija para	
	la topología de nueve celdas en el convertidor matricial monofásico	93
14.	Resultados error de corriente calculado del control predictivo a frecuencia	
	fija aplicado a la topología de tres cel das en estado estacionario. \ldots .	94
15.	Resultados error de corriente calculado del control predictivo a frecuencia	
	fija aplicado a la topología de tres cel das en estado transiente. \ldots .	94
16.	Estados válidos de conmutación de cada convertidor matricial $3\mathrm{x}1$	156
17.	Estados válidos de conmutación de cada convertidor matricial $3\mathrm{x}1$	157
18.	Estados válidos de conmutación de cada convertidor matricial $3\mathrm{x}1$	158
19.	Estados válidos de conmutación de cada convertidor matricial $3 \mathrm{x} 1$	159

20.	Estados	válidos	de	$\operatorname{conmutación}$	de	cada	$\operatorname{convertidor}$	matricial	3x1		160
21.	Estados	válidos	de	conmutación	de	cada	$\operatorname{convertidor}$	matricial	3x1		161
22.	Estados	válidos	de	conmutación	de	cada	$\operatorname{convertidor}$	matricial	3x1		162
23.	Estados	válidos	de	conmutación	de	cada	$\operatorname{convertidor}$	matricial	3x1		163
24.	Estados	válidos	de	conmutación	de	cada	$\operatorname{convertidor}$	matricial	3x1		164
25.	Estados	válidos	de	conmutación	de	cada	$\operatorname{convertidor}$	matricial	3x1		165
26.	Estados	válidos	de	conmutación	de	cada	$\operatorname{convertidor}$	matricial	3x1		166
27.	Estados	válidos	de	conmutación	de	cada	$\operatorname{convertidor}$	matricial	3x1		166
28.	Estados	válidos	de	conmutación	de	cada	$\operatorname{convertidor}$	matricial	3x1		167
29.	Estados	válidos	de	conmutación	de	cada	$\operatorname{convertidor}$	matricial	3x1		168
30.	Estados	válidos	de	conmutación	de	cada	$\operatorname{convertidor}$	matricial	3x1		168
31.	Estados	válidos	de	conmutación	de	cada	$\operatorname{convertidor}$	matricial	3x1		169
32.	Estados	válidos	de	conmutación	de	cada	$\operatorname{convertidor}$	matricial	3x1		170
33.	Estados	válidos	de	conmutación	de	cada	$\operatorname{convertidor}$	matricial	3x1		170
34.	Estados	válidos	de	conmutación	de	cada	$\operatorname{convertidor}$	matricial	3x1		171
35.	Estados	válidos	de	conmutación	de	cada	$\operatorname{convertidor}$	matricial	3x1		171
36.	Estados	válidos	de	conmutación	de	cada	$\operatorname{convertidor}$	matricial	3x1		172
37.	Estados	válidos	de	conmutación	de	cada	$\operatorname{convertidor}$	matricial	3x1		173
38.	Estados	válidos	de	conmutación	de	cada	$\operatorname{convertidor}$	matricial	3x1		174
39.	Estados	válidos	de	conmutación	de	cada	$\operatorname{convertidor}$	matricial	3x1		174
40.	Estados	válidos	de	conmutación	de	cada	$\operatorname{convertidor}$	matricial	3x1		175
41.	Estados	válidos	de	conmutación	de	cada	$\operatorname{convertidor}$	matricial	3x1		176
42.	Estados	válidos	de	conmutación	de	cada	$\operatorname{convertidor}$	matricial	3x1		176
43.	Estados	válidos	de	conmutación	de	cada	$\operatorname{convertidor}$	matricial	3x1		177
44.	Estados	válidos	de	conmutación	de	cada	$\operatorname{convertidor}$	matricial	3x1		178
45.	Estados	válidos	de	conmutación	de	cada	$\operatorname{convertidor}$	matricial	3x1		179
46.	Estados	válidos	de	conmutación	de	cada	$\operatorname{convertidor}$	matricial	3x1		180
47.	Estados	válidos	de	conmutación	de	cada	$\operatorname{convertidor}$	matricial	3x1		181
48.	Estados	válidos	de	conmutación	de	cada	$\operatorname{convertidor}$	matricial	3x1		182
49.	Estados	válidos	de	conmutación	de	cada	$\operatorname{convertidor}$	matricial	3x1		183
50.	Estados	válidos	de	conmutación	de	cada	$\operatorname{convertidor}$	matricial	3x1		184
51.	Estados	válidos	de	conmutación	de	cada	$\operatorname{convertidor}$	matricial	3x1		185

Estados	válidos	de	conmutación	de	cada	$\operatorname{convertidor}$	matricial	3x1	•	•	•	186
Estados	válidos	de	conmutación	de	cada	$\operatorname{convertidor}$	matricial	3x1	•	•		187
Estados	válidos	de	conmutación	de	cada	$\operatorname{convertidor}$	matricial	3x1	•			187
Estados	válidos	de	conmutación	de	cada	$\operatorname{convertidor}$	matricial	3x1	•			188
Estados	válidos	de	conmutación	de	cada	$\operatorname{convertidor}$	matricial	3x1	•			189
Estados	válidos	de	conmutación	de	cada	$\operatorname{convertidor}$	matricial	3x1		•	•	189
Estados	válidos	de	conmutación	de	cada	$\operatorname{convertidor}$	matricial	3x1		•	•	190
Estados	válidos	de	conmutación	de	cada	$\operatorname{convertidor}$	matricial	3x1	•			191
Estados	válidos	de	conmutación	de	cada	$\operatorname{convertidor}$	matricial	3x1	•			191
Estados	válidos	de	conmutación	de	cada	$\operatorname{convertidor}$	matricial	3x1		•		192
Estados	válidos	de	conmutación	de	cada	$\operatorname{convertidor}$	matricial	3x1	•			192
Estados	válidos	de	conmutación	de	cada	$\operatorname{convertidor}$	matricial	3x1		•		193
Estados	válidos	de	conmutación	de	cada	$\operatorname{convertidor}$	matricial	3x1		•		194
Estados	válidos	de	conmutación	de	cada	$\operatorname{convertidor}$	matricial	3x1		•		195
Estados	válidos	de	conmutación	de	cada	$\operatorname{convertidor}$	matricial	3x1		•		195
Estados	válidos	de	conmutación	de	cada	$\operatorname{convertidor}$	matricial	3x1		•		196
Estados	válidos	de	conmutación	de	cada	$\operatorname{convertidor}$	matricial	3x1		•		197
Estados	válidos	de	conmutación	de	cada	$\operatorname{convertidor}$	matricial	3x1		•		197
Estados	válidos	de	conmutación	de	cada	$\operatorname{convertidor}$	matricial	3x1		•		198
Estados	válidos	de	conmutación	de	cada	$\operatorname{convertidor}$	matricial	3x1	•			199
Estados	válidos	de	conmutación	de	cada	$\operatorname{convertidor}$	matricial	3x1		•		200
Estados	válidos	de	conmutación	de	cada	$\operatorname{convertidor}$	matricial	3x1		•		201
Estados	válidos	de	conmutación	de	cada	$\operatorname{convertidor}$	matricial	3x1		•		202
Estados	válidos	de	conmutación	de	cada	$\operatorname{convertidor}$	matricial	3x1		•		203
Estados	válidos	de	conmutación	de	cada	$\operatorname{convertidor}$	matricial	3x1	•			204
Estados	válidos	de	conmutación	de	cada	$\operatorname{convertidor}$	matricial	3x1	•			205
Estados	válidos	de	conmutación	de	cada	$\operatorname{convertidor}$	matricial	3x1	•			206
Estados	válidos	de	conmutación	de	cada	convertidor	matricial	3x1		•		207
Estados	válidos	de	conmutación	de	cada	convertidor	matricial	3x1		•		208
Estados	válidos	de	conmutación	de	cada	convertidor	matricial	3x1				208
Estados	válidos	de	conmutación	de	cada	convertidor	matricial	3x1				209
Estados	válidos	de	conmutación	de	cada	convertidor	matricial	3x1	•	•		210
	Estados Estados	Estados válidos Estados válidos	Estados válidos de Estados válidos de	Estados válidos de conmutación Estados válidos de conmutación	Estados válidos de conmutación de Estados válidos de conmutación de	Estados válidos de conmutación de cada Estados válidos de conmutación de cada	Estados válidos de conmutación de cada convertidor Estados válidos de conmutación de cada convertidor	Estados válidos de conmutación de cada convertidor matricial Estados válidos de conmutación de	Estados válidos de conmutación de cada convertidor matricial 3x1 Estados válidos de conmutación	Estados válidos de conmutación de cada convertidor matricial 3x1 . Estados válidos de conmutación de cada convertidor matricial 3x1 . Estados válidos de conmutación de cada convertidor matricial 3x1 . Estados válidos de conmutación de cada convertidor matricial 3x1 . Estados válidos de conmutación de cada convertidor matricial 3x1 . Estados válidos de conmutación de cada convertidor matricial 3x1 . Estados válidos de conmutación de cada convertidor matricial 3x1 . Estados válidos de conmutación de cada convertidor matricial 3x1 . Estados válidos de conmutación de cada convertidor matricial 3x1 . Estados válidos de conmutación de cada convertidor matricial 3x1 . Estados válidos de conmutación de cada convertidor matricial 3x1 . Estados válidos de conmutación de cada convertidor matricial 3x1 . Estados válidos de conmutación de cada convertidor matricial 3x1 . Estados válidos de conmutación de cada convertidor matricial 3x1 . Estados válidos de conmutación de cada convertidor matricial 3x1 . Estados válidos de conmutación de cada convertidor matricial 3x1 . Estados válidos de conmutación de cada convertidor matricial 3x1 . Estados válidos de conmutación de cada convertidor matricial 3x1 . Estados válidos de conmutación de cada convertidor matricial 3x1 . Estados válidos de conmutación de cada convertidor matricial 3x1 . Estados válidos de conmutación de cada convertidor matricial 3x1 . Estados válidos de conmutación de cada convertidor matricial 3x1 . Estados válidos de conmutación de cada convertidor matricial 3x1 . Estados válidos de conmutación de cada convertidor matricial 3x1 . Estados válidos de conmutación de cada convertidor matricial 3x1 . Estados válidos de conmutación de cada convertidor matricial 3x1 . Estados válidos de conmutación de cada convertidor matricial 3x1 . Estados válidos de conmutación de cada convertidor matricial 3x1 . Estados válidos de conmutación de cada convertidor matricial 3x1 . Estados válidos de conmutación de cada convertidor matricial 3x1 . Estado	Estados válidos de conmutación de cada convertidor matricial 3x1 Estados válidos	Estados válidos de commutación de cada convertidor matricial 3x1 Estados válidos de commutación de cada convertidor matricial 3x1 Estados válidos de commutación de cada convertidor matricial 3x1 Estados válidos de commutación de cada convertidor matricial 3x1 Estados válidos de commutación de cada convertidor matricial 3x1 Estados válidos de commutación de cada convertidor matricial 3x1 Estados válidos de commutación de cada convertidor matricial 3x1 Estados válidos de commutación de cada convertidor matricial 3x1 Estados válidos de commutación de cada convertidor matricial 3x1 Estados válidos de commutación de cada convertidor matricial 3x1 Estados válidos de commutación de cada convertidor matricial 3x1 Estados válidos de commutación de cada convertidor matricial 3x1 Estados válidos de commutación de cada convertidor matricial 3x1 Estados válidos de commutación de cada convertidor matricial 3x1 Estados válidos de commutación de cada convertidor matricial 3x1 Estados válidos de commutación de cada convertidor matricial 3x1 Estados válidos de commutación de cada convertidor matricial 3x1

84.	Estados válidos de conmutación de cada convertidor matricial 3x1	210
85.	Estados válidos de conmutación de cada convertidor matricial $3\mathrm{x}1$	211
86.	Estados válidos de conmutación de cada convertidor matricial $3\mathrm{x}1$	212
87.	Estados válidos de conmutación de cada convertidor matricial $3\mathrm{x}1$	212
88.	Estados válidos de conmutación de cada convertidor matricial $3\mathrm{x}1$	213
89.	Estados válidos de conmutación de cada convertidor matricial $3\mathrm{x}1$	213
90.	Estados válidos de conmutación de cada convertidor matricial $3\mathrm{x}1$	214
91.	Estados válidos de conmutación de cada convertidor matricial $3\mathrm{x}1$	215
92.	Estados válidos de conmutación de cada convertidor matricial $3\mathrm{x}1$	216
93.	Estados válidos de conmutación de cada convertidor matricial $3\mathrm{x}1$	216
94.	Estados válidos de conmutación de cada convertidor matricial $3\mathrm{x}1$	217
95.	Estados válidos de conmutación de cada convertidor matricial $3\mathrm{x}1$	218
96.	Estados válidos de conmutación de cada convertidor matricial 3x1	218

Nomenclatura

i_a, i_b, i_c	Corrientes de salida del convertidor.
v_{an}, v_{bn}, v_{cn}	Voltajes de fase.
v_o	Voltaje en la carga.
i_o	Corriente en la carga.
v_i	Voltaje de la fuente.
i_i	Corriente de la fuente.
S_n	Switch.
L	Inductancia de carga.
R	Resistencia de carga.
g_1, g_2, g_0	Funciones de costo.
i_{lpha},i_{eta}	Corrientes en coordenadas $\alpha \neq \beta$.
T_s	Tiempo de muestreo.
δ	Desfase.
i_k	Corriente medida.
v_k	Voltaje calculado.
d_0, d_1, d_2	Ciclos de trabajo para aplicación de vectores óptimos.
T_0, T_1, T_2	Tiempos de aplicación para vectores óptimos.
v_n	Vectores óptimos.
e_{sim}	Error de simulación.

Abreviaciones

LCEEP	Laboratorio de Conversión de Energías y Electrónica de Potencia.
IGBT	Transistor Bipolar de Compuerta Aislada (Insulated-Gate Bipolar Transistor).
MC	Convertidor Matricial
ITP	Transferencia de Potencia por Inducción
FPGA	Arreglo de Compuertas Lógicas Programables (Field Programmable Gate Array).
AC	Corriente Alterna (Altarnate Current).
DC	Corriente Continua (Direct Current).
IEEE	Instituto de Ingenieros Eléctricos y Electrónicos (Institute of Electrical
	and Electronics Engineers).
MPC	Control Predictivo Basado en Modelos (Model Predictive Control).
THD	Distorsión Armónica Total (Total Armonic Distortion).
MMMC	Multi Modular Matrix Converter(Convertidor Matricial Multi Modular)

1. Introducción General

1.1. Introducción

El crecimiento tecnológico de los últimos años a nivel nacional y mundial ha derivado en la búsqueda de nuevas formas que permitan una mayor eficiencia energética. Por su parte, el Gobierno Chileno en Marzo del 2012 propuso la Estrategia Nacional de Energía en la cual se presenta el desafío de "desarrollar energías que permitan llevar al país a un desarrollo económico sustentable, con los adecuados resguardos en materia de salud y protección al medio ambiente" [1].

Los convertidores de potencia juegan un rol importante en este sentido, ya que estos permiten la interconexión entre los generadores y los sistemas de distribución. En cuanto a esto, los sistemas actuales generalmente incluyen elementos de almacenamiento de energía, los cuales generan posibilidades de falla además de incrementar el tamaño y el peso del sistema, y aquí es donde el convertidor matricial puede resultar una gran alternativa.

La investigación acerca de este tipo de convertidor se remonta a la década de 1980, donde el trabajo de Venturini [2] y Alesina introdujo el término de lo que hoy se conoce como convertidor matricial (MC), además del trasfondo matemático del mismo. Éste consiste en un arreglo de switches bidireccionales, el cual tiene como principal característica que no necesita de ningún enlace DC o grandes elementos almacenadores de energía, lo que permite la conexión directa desde la fuente de alimentación a la carga. Sus características principales son: 1) cuenta con un circuito compacto de potencia; 2) la generación de voltaje de carga con amplitud y frecuencia artbitraria; 3) corrientes de entrada y salida sinusoidales; 4) operación con factor de potencia unitario; 5) capacidad de regeneración.

En principio, el estudio de los convertidores matriciales se limitó al rango de baja potencia, pero tras años de investigaciones, actualmente el desarrollo del convertidor matricial ha alcanzado incluso el área de aplicaciones industriales [3]. Las futuras necesidades energéticas han hecho que se investigue y analice el comportamiento de convertidores matriciales en el uso de energías renovables. Siguiendo este concepto, en [4] se presenta un convertidor matricial para sistemas de conversión de energía eólica para conectar a la red eléctrica. Basado en el problema ambiental existente, donde los combustibles fósiles se han convertido más en un problema que en una solución, se ha elevado el uso de energías renovables. Esto implica una gran ayuda, ya que se evita la emisión de gases de efecto invernadero y otros gases que puedan contribuir al calentamiento global. Debido al mismo incremento del uso de energías renovables, es que se convierte en un desafío el poder integrar este tipo de sistemas a la red energética. Dentro del mismo, se describe un sistema simulado en MATLAB/Simulink, que permite obtener voltajes controlados de salida ante distintas velocidades de viento, con un convertidor matricial y sin necesidad de enlaces DC, lo que, en conclusión, lo hace conveniente para una red interconectada de un sistema de conversión de energía eólico [4].

En relación con todo esto, una de las técnicas emergentes en los últimos años es la de Transferencia de Potencia por Inducción (Inductive Power Transfer, IPT). Esta es una técnica pensada para aplicarse tanto en electrónica de consumo de baja potencia, como para sistemas de carga por inducción de alta potencia para vehículos eléctricos pesados. En este sentido, gracias a las ventajas del convertidor matricial ya mencionadas, como lo son la eliminación de elementos almacenadores de energía capacitivos e inductivos, han generado un gran interés en cuanto a aplicaciones del convertidor matricial para en sistemas de IPT. En el caso de [5] se presenta el uso de un convertidor matricial trifásico AC-AC para sistemas de Transferencia de Potencia por Inducción, específicamente, en el área de carga por inducción de vehículos eléctricos. La posibilidad de tener corrientes bidireccionales permiten que el convertidor matricial sea conveniente para conexiones IPT basadas en red-a-vehículo (Grid to Vehicle, G2V) o vehículo-a-red (Vehicle to Grid, V2G). El controlador en este caso asegura que en todo momento se alcance la máxima transferencia de potencia, ya que así se puede comparar con los sistemas conductivos convencionaes de carga. Así mismo se realiza en [6], donde también se presenta un convertidor matricial esta vez con salida monofásica y entrada trifásica, pensado de igual forma para transferencia de potencia inalámbrica. En ambos casos, según lo investigado, se permitiría obtener sistemas de carga inalámbrica específicamente para autos eléctricos, lo cual permitiría mayor flexibilidad y autonomía a futuro.

De la misma forma, distintas estrategias de control se han desarrollado para obtener un funcionamiento óptimo del convertidor matricial, así como también se han desarrollados distintas configuraciones del mismo convertidor. Tanto técnicas de control predictivo para convertidores monofásicos AC/AC [7], como técnicas desarrolladas en los últimos años para obtener un control óptimo en convertidores matriciales basada en un Regulador Cuadrático Lineal (Linear Quadratic Regulator, LQR) [8] para un convertidor matricial trifásico de 9 switches bidireccionales. En el caso de esta última técnica, se muestra que el método propuesto permite una mayor ancho de banda de corriente de salida en comparación con los enfoques tradicionales basados en control PI.

También existen ejemplos recientes de control predictivo en base a modelos para convertidores matriciales monofásicos AC/DC, como es el caso que se presenta en [9]. El control predictivo en base a modelos se ha alzado como un método competitivo debido a sus ventajas como lo son la simplicidad, la rápida respuesta dinámica y la facilidad de incluir diferentes objetivos de control, pero la computación es larga y la frecuencia de conmutación es variable. En la investigación se desarrolla una solución que en comparación con el modelo convencional, el modelo simplificado llevado a cabo mantiene la rápida respuesta dinámica con la frecuencia de conmutación fija, y la calidad de la forma de onda es mejorada sin necesidad de alta frecuencia de conmutación.

Para esta memoria se espera generar nuevo conocimiento relacionado al uso de convertidores de potencia para mejorar la infraestructura de transmisión. Se proponen las ventajas de usar una estructura multimodular basada en convertidores matriciales monofásicos que permitan una más flexible y modular interfaz de electrónica de potencia que permita conectar diferentes tipos de fuentes y cargas incluyendo redes eléctricas de medio voltaje, fuentes de energía renovables y sistemas de almacenamiento de energía.

1.2. Objetivos

1.2.1. General

Validar mediante simulaciones un control predictivo a frecuencia fija aplicado una a distintas topologías multimodulares de conversión de energía basada en convertidores matriciales monofásicos.

1.2.2. Específicos

- Investigar acerca del funcionamiento de los Convertidores Matriciales Monofásicos, su funcionamiento, topologías que se han desarrollado hasta ahora y controles que se han aplicado en diferentes proyectos.
- Desarrollar técnicas de control y modulación para la estructura propuesta.
- Validar la estructura propuesta mediante resultados obtenidos por medio de simulaciones en MATLAB/Simulink .

1.3. Hipótesis

Es posible la implementación de algoritmos de control predictivo a frecuencia fija en convertidores matriciales monofásicos.

1.4. Alcances

- Pruebas de cada topología para distintas amplitudes de corriente.
- Uso de una carga monofásica Resistiva-Inductiva.
- Uso de convertidores matriciales monofásicos.
- Uso de Matlab/Simulink para completar los análisis teóricos.

1.5. Metodología

• Estudio y análisis teórico.

Para lograr los objetivos propuestos se deberá realizar un estudio teórico y análisis que incluye revisar, entre otros, información acerca del funcionamiento del convertidor matricial y las técnicas existentes de control. Realizar análisis teórico de la arquitectura propuesta para la interconexión de diferentes sistemas de generación y/o cargas, desarrollo de técnicas de control y modulación para la estructura propuesta.

• Propuesta, análisis y validación por simulaciones.

En vista de la contingencia, la propuesta inicial se tuvo que ver modificada para permitir el trabajo a distancia. Es por eso, que la propuesta actual es aplicar un control predictivo a frecuencia fija para distintas topologías con convertidores matriciales. Se propondrá primero un control predictivo para un convertidor matricial, y comprobar su funcionamiento mediante simulaciones en Simulink. Lo mismo se deberá comprobar para las otras estructuras propuestas.

2. El Convertidor Matricial Monofásico

El convertidor matricial es un convertidor AC/AC, que permite obtener una señal AC variable a partir de una señal AC fija sin necesidad de grandes elementos almacenadores de energía y no tiene enlace DC. Consiste en un arreglo de switches bidireccionales conectados directamente a la fuente AC de entrada a la carga. El convertidor matricial puede cumplir con las siguientes características:

- Circuito simple y compacto.
- Generación de voltaje y corriente de carga con amplitud y frecuencia arbitrarias.
- Corrientes de entrada sinusoidales.
- Operación con factor de potencia unitario.
- Capacidad de regeneración.

El convertidor matricial de una etapa cuenta con una matriz de M x N switches bidireccionales, que conectan una fuente de voltaje M-fásica con una carga N-fásica. El convertidor matricial más común es el convertidor 3x3, que cuenta con 9 switches bidireccionales para obtener una salida trifásica a partir de una entrada trifásica.

2.1. Circuito de potencia

El convertidor matricial 3x1, tal como el convertidor matricial 3x3, cuenta con una etapa única de conversión AC/AC, con la diferencia que en este caso, a partir de una entrada trifásica se obtiene una salida monofásica, como se observa en la Figura 1.

En la Figura 2 se observa la topología del convertidor matricial 3x1, con una entrada compuesta por una fuente trifásica y con una salida compuesta por una carga monofásica. Este convertidor cuenta con 6 switches bidireccionales, tres para la línea de fase (S_1, S_2, S_3) y otros tres para la línea de neutro (S_4, S_5, S_6) .

Figura 1: Diagrama de bloques de un convertidor monofásico directo.

Figura 2: Topología convertidor matricial monofásico.

2.2. Modelo matemático

El modelo matemático [10] se obtiene a partir de la Figura 2. Se observa que el voltaje de salida está dado por:

$$v = [v^p - v^n] \tag{1}$$

La ecuación (1) está en función de los estados del convertidor y los voltajes de salida, tal como se muestra a continuación:

$$v^p = [S_1 S_2 S_3] v_i;$$
 (2)

$$v^{n} = [S_{4} S_{5} S_{6}] v_{i}; (3)$$

Las corrientes de entrada \mathbf{i}_i están sintetizadas en función de los estados de los switches del convertidor y la corriente de carga i_o :

$$i_{i} = \begin{bmatrix} S_{1} - S_{4} \\ S_{2} - S_{5} \\ S_{3} - S_{6} \end{bmatrix} i_{o}.$$
(4)

Estas ecuaciones corresponden a los nueve estados válidos de conmutación del convertidor. Las restricciones son que no existan cortocircuitos en la entrada ni líneas abiertas en la salida. Asumiendo una carga RL (Resistiva-Inductiva), la ecuación que describe el comportamiento de la carga es:

$$\frac{di_o}{dt} = \frac{1}{L}v - \frac{R}{L}i_o \tag{5}$$

2.3. Restricciones de operación

Como se ha mencionado anteriormente, el convertidor matricial trabaja con switches bidireccionales, los que son capaces de bloquear el voltaje y conducir corriente en ambas direcciones. La configuración típica de estos switches es con dos diodos y dos IGBTs conectados en antiparalelo.

Si ambos transistores están apagados, no circulará corriente debido a los diodos. El switch pasa a estado de conducción cuando llega la señal de control en el gate. Para que la corriente circule del terminal 1 a 2, tal como en la Figura 2.3(b), se debe disparar T_a y V_1 ser mayor que V_2 . Caso contrario como en la Figura 2.3(c), para que la corriente circule de V_2 a V_1 , se debe disparar T_B y V_1 ser menor que V_2 .

Para el caso del convertidor matricial 3x1, se observa que se cuentan con 6 switches bidireccionales, lo que en total son 12 IGBTs, como se observa en la Figura 2. Teniendo esto en cuenta, para la construcción del sistema completo, al ser dos convertidores matriciales 3x1, se deberán implementar 24 IGBTs en total.

Para la operación segura del convertidor, se debe cumplir con ciertas restricciones en la conmutación de los switches. El estado de los switch se representa por la siguiente función de conmutación:

$$S_{xy} = \begin{cases} 0 & Switch \ OFF \\ 1 & Switch \ ON \end{cases}$$
(6)

Para el caso del convertidor matricial, las restricciones son que sólo un switch de una columna esté cerrado y que al menos un switch de cada columna debe estar cerrado. El que existan dos switches encendidos en una columna implica que exista un cortocircuito, además, la naturaleza inductiva de la carga hace imposible interrumpir la corriente de carga de forma repentina, si se interrumpe la corriente abruptamente se generan sobrevoltajes y se queman los transistores, por lo que es necesario que se cumpla con la segunda condición antes expresada.

Anteriormente se mencionó los casos en los que debe ser restringida la conmutación de los switches. Como ejemplo, en la Figura 3 se muestra el caso de los Switches S_1 y S_2 conduciendo al mismo tiempo. Si se le dal al señal al IGBT T_{A1} y T_{B2} de conducción, con V₁ mayor que V₂ se produce un corcocircuito.

La estrategia de la conmutación a ocupar se basará en ocupar como referencia el signo de la corriente generada por el controlador. Entre los dos switches, se pueden

Figura 3: Cortocircuito en la fuente debido a dos switches encendidos.

generar ocho estados válidos de conducción segura, mostrados en la Tabla 1

Estado	T_1	T_2	T_3	T_4	i_o
1	1	1	0	0	+-
2	0	0	1	1	+-
3	1	0	0	0	+
4	0	1	0	0	—
5	0	0	1	0	+
6	0	1	0	1	—
7	1	0	1	0	+
8	0	1	0	1	_

Tabla 1: Estados válidos conmutación de 4 pasos

Para pasar de un estado con $S_1 = ON$ y $S_2 = OFF$ a un estado de $S_1 = OFF$ y $S_2 = ON$, se deben pasar por cuatro etapas. Éstas dependen también de la dirección de la corriente, donde existirán dos casos, con corriente i_1 positiva o corriente i_1 negativa.

Caso de corriente $i_1 > 0$

Lo primero a realizar es encender el primer switch bidireccional, lo que implica que los IGBT T_{A1} y T_{B1} se encederán, como en la Figura 4.

• Paso 1: Apagar T_{B1} . Ambos IGBT están encendidos, pero como la corriente de i_1 es positiva no fluirá por T_{B1} , lo que implica que no conducirá, como se muestra en la Figura 5. De esta manera, el apagado no generará sobretensión.

Figura 4: Estado inicial $i_o > 0$.

Figura 5: Paso 1: Apagar $T_B 1$.

- Paso 2: Encender T_{A2} . Dependiendo de los voltajes existen dos opciones:
 - V₁ > V₂, lo que haría que T_{A2} no conduzca y la corriente continúe pasando por T_{A1}.
 - $V_1 < V_2$, lo que produce un cortocircuito, que corta la conducción por T_{A1} y su diodo. Ahora es T_{A2} el que lleva la corriente i_1 ahora.

Figura 6: Paso 2: Encender T_{A2}

• Paso 3: Quitar el pulso a T_{A1} . De esta forma, existen dos opciones: O se genera sobrevoltaje en T_{A2} que hace que conduzca junto a su diodo, si es que $V_1 > V_2$, o sigue conduciendo si $V_2 > V_1$. De todas formas, la corriente ahora tomará el camino de T_{A2} .

Figura 7: Paso 3: Quitar el pulso a T_{A1}

• Paso 4: Encender T_{B2} , que es el transistor que aún estaba apagado en el switch que había sido encendido recientemente. De esta forma, se completa la conmutación, pasando de S_1 en ON y S_2 en OFF a S_1 en OFF y S_2 en ON.

Figura 8: Paso 4: Encender T_{B2}

Caso de corriente $i_1 < 0$

Se enciende el primer switch bidireccional, lo que implica que los IGBT T_{A1} y T_{B1} se encederán, como en la Figura 9. Se determina la dirección de la corriente.

Figura 9: Estado inicial $i_o > 0$.

• Paso 1: Apagar T_{A1} . Ambos IGBT están encendidos, pero como la corriente de i_1 es negativa no fluirá por él, lo que implica que no conducirá. En la Figura 10 se muestra que la corriente ahora pasa por T_{B1} , por lo que de esta manera, se apaga T_{A1} .

Figura 10: Paso 1: Apagar T_{A1} .

- Paso 2: Encender T_{B2} . Dependiendo de los voltajes existen dos opciones:
 - V₁ < V₂, lo que haría que T_{B2} no conduzca y la corriente continúe pasando por T_{B1}.
 - $V_1 > V_2$, lo que produce un cortocircuito, corta la conducción por T_{B1} y su diodo. Ahora es T_{B2} el que lleva la corriente i_1 .

Figura 11: Paso 2: Encender T_{A2}

Paso 3: Quitar el pulso a T_{B1}. De esta forma, existen dos opciones: O se genera sobrevoltaje en T_{B2} que hace que conduzca junto a su diodo, o sigue conduciendo si V₂ < V₁, como revisado en el paso anterior.

Figura 12: Paso 3: Quitar el pulso a T_{A1}

• Paso 4: Encender T_{A2} , que es el transistor que aún estaba apagado en el switch que había sido encendido recientemente. De esta forma, se completa la conmutación, pasando de S_1 en ON y S_2 en OFF a S_1 en OFF y S_2 en ON.

Figura 13: Paso 4: Encender T_{B2}

2.4. Estados válidos de conmutación

Teniendo en cuenta la información mostrada anteriormente, los estados válidos se muestran en la Tabla 4.4.

Estado de conmutación	S_1	S_2	S_3	S_4	S_5	S_6	v_p	v_n	i_a	i_b	i_c
1	0	0	1	0	0	1	v_c	v_c	0	0	0
2	0	1	0	0	1	0	v_b	v_b	0	0	0
3	1	0	0	1	0	0	v_a	v_a	0	0	0
4	0	0	1	0	1	0	v_c	v_b	0	$-i_o$	i_o
5	0	0	1	1	0	0	v_c	v_a	$-i_o$	0	i_o
6	0	1	0	0	0	1	v_b	v_c	0	i_o	$-i_o$
7	0	1	0	1	0	0	v_b	v_a	-io	i_o	0
8	1	0	0	0	0	1	v_a	v_c	i_o	0	$-i_o$
9	1	0	0	0	1	0	v_a	v_b	i_o	$-i_o$	0

Tabla 2: Estados válidos de conmutación del convertidor matricial 3x1

Los problemas principales que se pueden generar debido a la incorrecta implementación de la estrategia de conmutación serían:

- No apagarse ambos switches bidireccionales. Ocasionaría una sobretensión debido al elemento inductivo de la carga.
- No encender simultáneamente ambos switches bidireccionales, debido a que generaría un cortocircuito en la fuente de entrada.

2.5. Formas de onda típicas

Como se explicó anteriormente, las ondas que se debieran obtener deben ser señales sinusoidales. Es por esto, que se buscaron proyectos similares existentes, como por ejemplo en [11] y en [12], y de ellos se extrae a continuación una referencia de como son ser las señales de corrientes obtenidas.

Figura 14: Señal de corriente entregada por el convertidor matricial monofásico.
3. Topologías Derivadas del Convertidor Matricial Monofásico

Los convertidores fuente de voltaje se han vuelto populares en cuanto a unidades de alta potencia - medio voltaje. A diferencia del convertidor convencional de dos niveles fuente de voltaje, los ML-VSC (MultiLevel Voltage-Source Converters) [13] tienen como ventajas el que reducen la tensión de los interruptores de potencia, mejor calidad de onda en la entrada y salida en términos de THD y perfil armónico debido a las formas de onda generadas de múltiples pasos.

Existen documentos [14] donde se presentan con mayor profundidad dichas configuraciones, y a continuación, se presentarán las dos configuraciones distintas que utilizan convertidores matriciales de tres entradas y dos salidas presentadas.

3.1. Topología con tres celdas

La forma básica del convertidor matricial de tres entradas y dos salidas antes vista, se utilizará para trabajar en un convertidor matricial multinivel de tres módulos.

Mediante tres de estos convertidores matriciales 3x1 de 6 switches se puede construir un convertidor multinivel para alimentar una carga trifásica, como se muestra en la Figura 15.

En esta Figura se conecta un transformador trifásico de cuatro devanados para tener aislación y potencia y el nivel de voltaje secundario necesario. Cada convertidor matricial es alimentado por un devanado secundario del transformador, y además se presentan filtros de capacitores para asistir a la conmutación y filtrar los armónicos de las interrupciones.

A la salida, un terminal de cada MC se conecta a un mismo punto para formar la carga neutral, mientras el resto se conecta directamene a las fases de la carga. Esta carga puede ser RL trifásica o una máquina AC.

3.1.1. Circuito de potencia

El circuito de potencia mostrado en la Figura 15 muestra la topología a implementar, la cual permitirá obtener una salida trifásica a partir de tres convertidores matriciales monofásicos.

Figura 15: Circuito simplificado del MMMC-I

Cada convertidor tendrá conectado una carga R-L, y las cargas de cada convertidor estarán conectadas entre sí, tal como se observa en la Figura 15.

3.1.2. Modelo matemático

Los voltajes y corrientes de salida de esta configuración del convertidor matricial están relacionados a las corrientes y voltajes de entrada. En los capítulos anteriores, se observó que cada convertidor matricial en cada fase existen 9 estados válidos posibles.

$$v_o = [S_1 - S_4 \quad S_2 - S_5 \quad S_3 - S_6]v_i \tag{7}$$

$$i_{i} = \begin{bmatrix} S_{1} - S_{4} \\ S_{2} - S_{5} \\ S_{3} - S_{6} \end{bmatrix} i_{o}$$
(8)

Estado de conmutación	S_1	S_2	S_3	S_4	S_5	S_6	v_n
1	0	0	1	0	0	1	0
2	0	1	0	0	1	0	0
3	1	0	0	1	0	0	0
4	0	0	1	0	1	0	$v_{cx} - v_{bx}$
5	0	0	1	1	0	0	$v_{cx} - v_{ax}$
6	0	1	0	0	0	1	$v_{bx} - v_{cx}$
7	0	1	0	1	0	0	$v_{bx} - v_{ax}$
8	1	0	0	0	0	1	$v_{ax} - v_{cx}$
9	1	0	0	0	1	0	$v_{ax} - v_{bx}$

Tabla 3: Estados válidos de conmutación de cada convertidor matricial 3x1

Cada switch $S_i(i \epsilon 1, 2, 3, 4, 5, 6)$ indica el estado de conmutación de cada switch del convertidor matricial. Como se ha mencionado en capítulos anteriores, si $S_i = 1$ el switch S_i está encendido, y caso contrario si $S_i = 0$ el switch está apagado.

3.2. Topología multinivel con 9 celdas

Si se agregan más convertidores matriciales a la topología de 3 celdas, se puede extender dicha topología a una de nueve celdas, que en este caso se le llamará MMMC-II. Esta estructura permitirá obtener una mayor potencia de salida y mejor desempeño del lado de los armónicos, tal como se presenta en [14].

Se utilizarán 9 convertidores matriciales monofásicos 3x1, de 6 switches cada uno, los cuales serán agrupados de a 3 como se observa en la Figura 16. De otra forma, se puede decir que en esta nueva topología será 3 veces la topología MMMC-I conectada en serie.

3.2.1. Circuito de potencia

En la Figura 16, se observa que cada convertidor matricial es alimentado por una fuente AC trifásica. Dichas fuentes, están configuradas con una diferencia de 120 o entre fases, con un desfase de -20 o para las fuentes que alimentan a los convertidores nombrados como A1, B1 y C1, y un desfase de +20 o para los convertidores A3, B3 y C3.

En el caso de la topología de 3 celdas, la salida de cada convertidor se conectaba a cada fase de la carga. En este caso, como se mencionó anteriormente, tres convertidores matriciales estarán conectados en serie y de esa forma se alimentará la carga trifásica. La fase A está determinada por los voltajes y corrientes obtenidos desde los convertidores A1, A2 y A3, tal como se muestra en la Figura. De la misma forma estarán conformadas las fases B y C.

Figura 16: Circuito simplificado del MMMC-II

3.2.2. Modelo matemático

El modelo matemático para cada convertidor sigue siendo el mismo que en los casos anteriores, la diferencia es que en este caso se deberán tener en cuenta tres convertidores para cada fase de la carga.

En los anexos del documento, se encuentran las tablas (16 a 96) que presentan todas las combinaciones posibles de los estados de los switches para cada convertidor teniendo en cuenta la topología de nueve celdas.

4. Control Predictivo a Frecuencia Fija del Convertidor Matricial Monofásico

El control predictivo consta de prever el comportamiento de, en este caso, la variable a controlar. Para este convertidor matricial monofásico, dicha variable será la corriente de salida, y para poder predecir el valor de dicha variable para el instante de tiempo siguiente al cual se está midiendo, será necesario pasar por todos los estados posibles del convertidor y evaluar cuál de todos entrega el menor error en comparación con la señal de referencia a utilizar, para así aplicar dicha combinación de switches en el convertidor. Dicho proceso se realizará en una determinada frecuencia de conmutación, para obtener a cada instante de tiempo los estados de los switches para alcanzar de mejor manera la señal de referencia [15, 16].

En el caso del control predictivo a frecuencia fija, la combinación de switches a evaluar está representada por una serie de vectores, los cuales serán revisados en los capítulos posteriores.

4.1. Esquema de control

En el esquema de control se podrá observar las variables para realizar el control predictivo a frecuencia fija basado en modelos (MPC). En este caso, las variables necesarias para realizar el control serán la corriente i(k) y el voltaje v(k), siendo k el instante de tiempo. Para realizar la selección de los estados apropiados a aplicar al convertidor monofásico, será necesario obtener cinco variables, las cuales representan el tiempo de acción de cada vector, dos vectores seleccionados y un vector nulo a aplicar para el control predictivo a frecuencia fija.

Figura 17: Esquema de control convertidor matricial monofásico

4.2. Modelo de predicción

Para realizar el modelo de predicción, lo primero será obtener el valor de la corriente en la carga, además de obtener un modelo que represente de manera óptima dicha carga. De capítulos anteriores, se tendrá en cuenta que el modelo de una carga RL viene dada por (9):

$$\frac{di_o}{dt} = \frac{1}{L}v - \frac{R}{L}i_o \tag{9}$$

Traspasando dicha ecuación al plano discreto, la discretización aproximada de la derivada mediante método de Euler permite obtener:

$$\frac{di_o}{dt} \approx \frac{i_o(k+1) - i_o(k)}{Ts}v \tag{10}$$

Donde: $i_o(k)$: Corriente actual $i_o(k+1)$: Corriente instante siguiente de tiempo Ts : Tiempo de muestreo

Igualando ambas ecuaciones, (9) y (11) se obtendrá el modelo de predicción:

$$i_o(k+1) \approx \frac{T_s}{L} v_o(k) + \left(1 - \frac{RT_s}{L}\right) i_o(k) \tag{11}$$

Donde $v_o(k)$ es el voltaje medido en la carga y se obtiene a partir del voltaje que alimenta el MC y la combinación de switches.

$$v_o = ((S_1 - S_4)v_A + (S_2 - S_5)v_B + (S_3 - S_6)v_C)$$
(12)

Siendo v_i el voltaje de la fuente, y S(1, 2, 3, 4, 5, 6) el estado de los switches del convertidor matricial.

4.3. Función de costo

Lo primero a realizar, para aplicar el control predictivo a frecuencia fija, será representar cada combinación de estados posibles para el convertidor matricial monofásico en el plano α - β . En capítulos anteriores, en la Tabla 3 se establecieron 9 estados, los cuales 6 eran estados cuyo voltaje v_{xn} era distinto de cero. Estos 6 estados serán sectores disponibles a evaluar, como se muestra en la Figura 18, mientras los restantes 3 estados serán definidos como estados nulos.

Cada uno de estos espacios creados por los vectores, enumerados del I al VI están definidos por un par de vectores adyacentes. El primer sector, delimitado por los vectores v_1 y v_2 , representa el primer estado válido de conmutación, o dicho de otra manera el estado 4 de la Tabla 3, donde se muestran los estados válidos para el convertidor matricial, y el segundo estado válido, el 5 de la misma tabla. Así, desde el par delimitado por los vectores v_1 y v_2 hasta el par v_6 y v_1 , cada par de vectores que represente los sectores del plano será evaluado en la ecuación de predicción la cual está presentada en la ecuación (11).

Figura 18: Vectores disponibles para el convertidor matricial monofásico.

Para obtener la función de costo, teniendo ya la predicción de corriente obtenida con la ecuación anterior, se obtendrán dos funciones de costo para evaluar el error entre la corriente de referencia, la cual está definida de acuerdo a ciertos parámetros, y la corriente predicha recientemente. Así, por cada instante de tiempo, estas funciones de costo serán evaluadas para poder obtener el error que existe por cada combinación de switches y luego poder comparar resultados de cada una.

$$g_1 = (i_{ref} - i_o(k+1)) * (i_{ref} - i_o(k+1))$$
(13)

$$g_2 = (i_{ref} - i_o(k+1)) * (i_{ref} - i_o(k+1))$$
(14)

Como los estados de los switches están definidos de acuerdo a los vectores establecidos anteriormente, se puede decir que en el caso del sector I del plano de la Figura 18 donde están los vectores asociados a los estados de los switches g_1 está asociado al vector v_1 y g_2 está asociado al vector v_2 . Los ciclos de trabajo para calcular los tiempos de acción de estos vectores se obtienen a partir de las siguientes fórmulas:

$$d_0 = K/g_0 \tag{15}$$

$$d_1 = K/g_1 \tag{16}$$

$$d_2 = K/g_2 \tag{17}$$

$$d_0 + d_1 + d_2 = T_s \tag{18}$$

De esta fórmula, d_0 representa el ciclo de trabajo de un vector cero que es evaluado en solo un instante de tiempo en el ciclo. Despejando estas ecuaciones se obtendrá la expresión K para cada vector:

$$d_0 = T_s g_1 g_2 / (g_0 g_1 + g_1 g_2 + g_0 g_2)$$
(19)

$$d_1 = T_s g_0 g_2 / (g_0 g_1 + g_1 g_2 + g_0 g_2)$$
(20)

$$d_2 = T_s g_0 g_1 / (g_0 g_1 + g_1 g_2 + g_0 g_2)$$
(21)

Con estas ecuaciones, se define la nueva función de costo la que será evaluada cada instante de tiempo.

$$g(k+1) = d_1g_1 + d_2g_2 \tag{22}$$

Esta ecuación será evaluada con cada par de vectores obtenidos anteriormente, y el par que minimice esta función de costo será el que se aplicará en el siguiente instante de tiempo.

4.4. Patrón de conmutación

Los vectores seleccionados anteriormente deberán ser aplicados por los instantes de tiempos calculados también a partir de las ecuaciones previas a la función de costo final. La Figura 19 muestra los instantes en los cuales serán implementados los vectores V_1 . V_2 y V_0 .

Figura 19: Patrón de conmutación para los vectores óptimos.

Durante el tiempo de aplicación del vector que antes fue llamado V_0 , serán aplicados los estados que antes fueron definidos como nulos. Volviendo al capítulo anterior, de la tabla donde están los estados válidos para el convertidor matricial, los 3 estados que no fueron definidos como vectores disponibles en la Figura 18 son los que serán aplicados durante este tiempo V_0 .

4.5. Algoritmo implementado

Para la aplicación del algoritmo de control predictivo a frecuencia fija, como se presentó anteriormente lo primero a tener en cuenta será la corriente medida de la carga para poder entrar a la evaluación de los estados. A partir de ella, se evalúa el g_0 calculado anteriormente el cual permitirá entrar a la evaluación de todos los estados definidos mediante pares de vectores pertenecientes al plano $\alpha - \beta$. Ambos vectores que representen cada combinación de switches se evalúan en la ecuación de predicción de corriente para poder posteriormente obtener los resultados de la función de costo y comparar todos los estados posibles a aplicar en el convertidor matricial, para así obtener el par de vectores óptimos a aplicar en el siguiente instante de tiempo. El diagrama del algoritmo a implementar se mostrará en la Figura 20.

Los vectores seleccionados serán aplicados de acuerdo al patrón de conmutación indicado anteriormente en la Figura 19, cuyos tiempos de acción serán T_0 , T_1 y T_2 .

Figura 20: Patrón de conmutación para los vectores óptimos.

4.6. Resultados de simulación

La simulación se ejecuta de acuerdo a los parámetros recién establecidos, para corroborar el correcto comportamiento del convertidor y el seguimiento de la corriente de referencia, bajo distintos parámetros de evaluación presentados en la Tabla 4.

Variable	Descripción	Valor
v_i	Voltaje de la fuente	540 [V]
f_i	Frecuencia de fuente	50 [Hz]
T_s	Tiempo de muestreo	$10, 25 \ [\mu s]$
R	Carga resistiva	$10 \ [\Omega]$
L	Carga inductiva	$10 \; [\mathrm{mH}]$
i _o	Amplitud de referencia	20, 50 [Apk]
f_o	Frecuencia de referencia	50 [Hz]

Tabla 4: Parámetros pruebas control predictivo a frecuencia fija del convertidor matricial monofásico.

4.6.1. Estado estacionario

Los parámetros con los que se realizarán las pruebas en Simulink están establecidos en la Tabla 4, y los resultados se presentan a continuación, desde la Figura 21 a la Figura 24.

0.023

t[s](a) Corriente en carga y corriente de referencia. (b) Ace

(b) Acercamiento gráfica corriente en carga y corriente de referencia.

Figura 21: Resultados control predictivo a frecuencia fija convertidor matricial monofásico a 50 [Hz] y 20 [Apk], con tiempo de muestreo de 10 [μ s].

(a) Corriente en carga y corriente de referencia.

(b) Acercamiento gráfica corriente en carga y corriente de referencia.

Figura 22: Resultados control predictivo a frecuencia fija convertidor matricial monofásico a 50 [Hz] y 50 [Apk], con tiempo de muestreo de 10 [μ s].

0.023

23 i_{ref} 22 212019 **T**18 1716 1514 13 0.022 $0.025 \\ t[s]$ 0.023 0.024 0.026 0.027 0.0282

(a) Corriente en carga y corriente de referencia.

(b) Acercamiento gráfica corriente en carga y corriente de referencia.

Figura 23: Resultados control predictivo a frecuencia fija convertidor matricial monofásico a 50 [Hz] y 20 [Apk], con tiempo de muestreo de 25 [μ s].

(a) Corriente en carga y corriente de referencia.

(b) Acercamiento gráfica corriente en carga y corriente de referencia.

Figura 24: Resultados control predictivo a frecuencia fija convertidor matricial monofásico a 50 [Hz] y 50 [Apk], con tiempo de muestreo de 25 [μ s].

El sistema fue puesto a prueba como se indicó anteriormente a corrientes de referencia de 20 [Apk] y 50 [Apk] para comprobar que se cumplieran con lo establecido. En la Figura 21, se encontrarán 4 cuadrantes en los cuales en 21.(a) se encuentra la corriente medida en la carga junto con la corriente de referencia aplicada, en 21.(b) se presenta un acercamiento a la curva para realizar una comparación con mayor exactitud entre la señal de referencia y la corriente medida, en 21.(c) se muestra el voltaje medido en la carga y en 21.(d) la aplicación del patrón de conmutación. De acuerdo a las imágenes, y ocupando como ejemplo 21, en (b) se puede diferenciar con mayor claridad la diferencia que existe entre la señal medida (en azul) y la señal de referencia (en rojo), donde se observa un correcto seguimiento de esta última señal, lo que indica una correcta aplicación del control predictivo a frecuencia fija. La Figura 21.(c) muestra que el voltaje en la carga llega casi a los 800 [V] para este control.

De las figuras (d) de cada ejemplo, se puede observar la aplicación del patrón de conmutación. El mejor ejemplo se puede observar en la Figura 24, donde justamente cada cuadro representa prácticamente cada tiempo de aplicación, y los tiempos se pueden observar de mejor manera en la Figura 25.

Figura 25: Acercamiento del patrón de conmutación.

Se muestran cuatro casos en total, donde la señal de referencia en el caso mostrado en la Figuras 21 y 23 alcanza los 20 [Apk] y en el caso de la Figura 22 y 24 alcanza los 50 [Apk]. Este último caso ejemplifica el rendimiento del convertidor matricial y el control aplicado al buscar la mayor corriente de peak que puede alcanzar, ya que a partir de aproximadamente los 50 [A] e incluso llegando a 53 [A] la corriente de carga no alcanza el punto máximo de la corriente de referencia. Al mismo tiempo, al tener una mayor corriente de referencia se alcanza un mejor forma del voltaje de salida, y el patrón de conmutación (d) se puede ver que en ambos casos se respeta, sobre todo es posible verlo en 22.(d) donde en cada separación vertical del grid diferencia la aplicación de los 7 estados para ese instante de tiempo.

Comparando las gráficas en términos del tiempo de muestreo, se puede observar claramente que al tener un tiempo más pequeño (10 [μ s]) se obtienen mejores resultados que con un tiempo más grande (25 [μ s]), sobre todo en la Figura 23(.*b*) que es el caso de 25 [μ s] y 20 [Apk], donde en la cresta de la onda la señal medida pierde completamente el seguimiento por un pequeño tramo de tiempo.

Comparando los casos en cuanto a corriente, se tiene que al tener mayor corriente peak se alcanza una mejor señal de voltaje tal como lo muestran las Figuras (c) de todos los ejemplos, y también la señal de corriente es mejorada, donde por ejemplo se observa un mucho menor ripple en la Figura 22(b) que en 21(b), ambos casos con un tiempo de muestreo de 10 [µs].

4.6.2. Estado transiente

Para los resultados en estado transiente, se doblará el valor de la corriente de salida a partir de los 0.02 [s]. La simulación tendrá los mismos parámetros anteriores presentados en la tabla 4.

(a) Corriente en carga y corriente de referencia.

(b) Acercamiento gráfica corriente en carga y corriente de referencia.

Figura 26: Resultados en estado transiente del control predictivo a frecuencia fija, convertidor matricial monofásico a 50 [Hz] y 20 [Apk], con tiempo de muestreo de 10 [μ s].

(a) Corriente en carga y corriente de referencia.

(b) Acercamiento gráfica corriente en carga y corriente de referencia.

Figura 27: Resultados en estado transiente control predictivo a frecuencia fija convertidor matricial monofásico a 50 [Hz] y 20 [Apk], con tiempo de muestreo de 25 [μ s].

En estado transiente, se puede observar el comportamiento del control predictivo a frecuencia fija a partir del instante en que la corriente de salida es multiplicada por dos. Para evaluar la respuesta dinámica, en este caso se realizó el cambio mencionado en la corriente sin variar la frecuencia.

Por lo que se observa de las Figura 26.(b), el control con tiempo de muestreo a 10 $[\mu s]$ la respuesta ante el escalón aplicado es bastante rápida. La corriente de referencia al inicio es de 20 [Apk] y desde los 0.02 [ms] pasa a ser de 40 [Apk], donde el error es mínimo entre la referencia y la corriente medida en la carga.

Para el caso con tiempo de muestreo de 25 $[\mu s]$, se observa en la Figura 27.(b) que ya antes de llegar a los 0.02 [s], que es cuando se aplica el cambio de amplitud de corriente, la corriente medida en la carga tiene una diferencia visible con la corriente de referencia. Pese a esta diferencia, el seguimiento se sigue realizando sin mayores diferencias.

El control se realiza llegando a un máximo de 40 [A], ya que como se indicó antes, aproximadamente a más de 50 [A] la curva de corriente sufría evidentes deformaciones y el control no alcanzaba a entregar la corriente necesaria.

4.6.3. Discusión

Se puede decir que el control predictivo a frecuencia fija aplicado al convertidor matricial monofásico funciona de manera correcta. En la comparación entre los casos, se observa que en ambos no existe mayor problema para el seguimiento de la corriente, ya que el objetivo del control es obtener señales sinusoidales y a lo largo de las figuras anteriores así se ha demostrado. Dentro de las limitaciones, como se ha mencionado antes está el hecho que el control no permite obtener corrientes mayores a 50 o 55 [A].

En cuanto al voltaje, tanto en estado estacionario como en estado transiente se obtienen buenas señales de voltaje. En ambos casos también se observa que cuanta mayor sea la corriente de referencia, mejor será la señal de voltaje entregada.

4.6.4. Análisis de THD y error absoluto

En las siguientes figuras se observan los resultados de distorsión armónica total (THD) y del cálculo del error absoluto del control predictivo a frecuencia fija para el convertidor matricial monofásico. Se analizan distintos tiempos de muestreo y para distintas amplitudes de corriente de referencia. Todos los resultados simulados en Simulink, para análisis de corriente y voltaje.

Figura 28: THD convertidor matricial monofásico con tiempo de muestreo de 10 [μ s] y corriente de 20 [A].

Figura 29: THD convertidor matricial monofásico con tiempo de muestreo de 20 $[\mu s]$ y corriente de 20 [A].

Figura 30: THD convertidor matricial monofásico con tiempo de muestreo de 50 $[\mu {\rm s}]$ y corriente de 20 [A].

Figura 31: THD convertidor matricial monofásico con tiempo de muestreo de 10 [μ s] y corriente de 50 [A].

Figura 32: THD convertidor matricial monofásico con tiempo de muestreo de 20 $[\mu s]$ y corriente de 50 [A].

Figura 33: THD convertidor matricial monofásico con tiempo de muestreo de 50 [μ s] y corriente de 50 [A].

Los resultados obtenidos de las simulaciones se observan a continuación, en la Tabla

5.

Tiempo de muestre o ${\cal T}_s$	Amplitud	$\%$ THD v_o	% THD i_o
$10 \; [\mu s]$	20 [A]	119.02%	0.48%
$20 \; [\mu s]$	20 [A]	118.88%	0.91%
$50 \ [\mu s]$	20 [A]	117.17%	2.27%
$10 \ [\mu s]$	50 [A]	63.73%	0.20%
$20 \; [\mu s]$	50 [A]	56.98%	0.41%
$50 \ [\mu s]$	50 [A]	54.31%	1.11%

Tabla 5: Resultados porcentaje THD del control predictivo a frecuencia fija en el convertidor matricial monofásico.

Los resultados del THD mostrados en las figuras anteriores, y traspasados a la Tabla 5 muestran un bajo porcentaje de distorsión armónica en las señales de corriente para todas las pruebas obtenidas. Esto tiene sentido, ya que el control se realiza sobre la corriente del sistema y no sobre el voltaje.

Si bien las diferencias no son tan amplias, los resultados de la Tabla 5 muestran que, a un menor tiempo de muestreo se obtiene un menor % THD tanto en voltaje como en corriente, evaluando con la misma amplitud de corriente de referencia. Esto tiene sentido, ya que tal como muestran las Figuras 21 a 24, se observan mejores resultados con tiempos menores de muestreo.

También, que a medida que sea mayor la corriente, menor es el % THD en corriente y mayor es el % THD voltaje, y eso se demuestra también con los resultados anteriores, esto tiene que ver con que el control está enfocado en la corriente y no el voltaje. Además, debido a las conmutaciones, se produce una señal de voltaje PWM, la cual hace que se incremente el % de THD.

Para calcular el error del control aplicado, se realizará una comparación entre la señal de referencia y la señal obtenida en la carga. El resultado final se obtiene a partir de comparar punto por punto ambas señales, para obtener el promedio a partir de una sumatoria de todos los errores como lo muestra la ecuación (23).

$$\frac{\left(\sum_{i=1}^{n} ||i_{o}| - |i_{ref}||\right) x 100}{A_{iref}} \tag{23}$$

 i_{ref} : Corriente de referencia

Tiempo de muestreo (Ts)	Amplitud Corriente (i_o)	Error (e_{sim})
$10 \ \mu s$	20	0.3982%
$20 \ \mu s$	20	0.7817%
$50 \ \mu s$	20	1.9654%
$10 \ \mu s$	50	0.2705%
$20 \ \mu s$	50	0.4333%
$50 \ \mu s$	50	1.0769%

Tabla 6: Resultados porcentaje THD del control predictivo a frecuencia fija en el convertidor matricial monofásico en estado estacionario.

Tiempo de muestreo (Ts)	Amplitud Corriente (i_o)	Error (e_{sim})
$10 \ \mu s$	20	0.5247%
$20 \ \mu s$	20	0.9436%
$50 \ \mu s$	20	2.2870%

Tabla 7: Resultados porcentaje THD del control predictivo a frecuencia fija en el convertidor matricial monofásico en estado transiente.

Los resultados del error calculado muestran que los mejores resultados se encuentran al ejecutar el control con el menor tiempo de muestreo y mayor amplitud de corriente. Nuevamente estos resultados se encuentran reflejados en las señales obtenidas, como en 22.(b) se obtiene una señal de corriente que es la que más se acerca a la señal de referencia, y como en 23.(b) se obtiene el peor seguimiento entre los ejemplos obtenidos con el mayor tiempo de muestreo y la menor amplitud de corriente.

5. Control Predictivo a Frecuencia Fija de las Topologías Derivadas del Convertidor Matricial Monofásico

En este capítulo se estudiarán las topologías de tres y nueve celdas. Como base se ocupará el convertidor matricial monofásico visto anteriormente y el control predictivo será basado en lo revisado en el capítulo anterior.

5.1. Topología con tres celdas

5.1.1. Esquema de control

Figura 34: Esquema de control topología con tres celdas.

En el esquema de control de la Figura 34 se puede observar que se utilizarán los 3 convertidores matriciales presentados en la Figura 15 del capítulo anterior para trabajar la topología de tres celdas. Cada convertidor es alimentado por una fuente trifásica, que a su vez alimentarán una carga RL, las cuales serán conectadas por el lado neutro. Las corrientes obtenidas de cada carga serán medidas para ejecutar el modelo de predicción, en el cual por separado permitirá obtener las corrientes futuras para cada fase. La minimización de la función de costos permitirá obtener tanto los vectores como los tiempos para ser aplicados a cada convertidor matricial.

5.1.2. Modelo de predicción

Ocupando como base el modelo de predicción del convertidor matricial monofásico, la diferencia se marcará en que en este caso al ser tres convertidores y no solo uno, se deberá predecir la corriente futura por cada convertidor matricial. De igual forma, los voltajes v_{oA} , v_{oB} y v_{oC} , serán calculados de acuerdo a cada convertidor también.

$$i_o(k+1) \approx \frac{T_s}{L} v_{oA}(k) + \left(1 - \frac{RT_s}{L}\right) i_{oA}(k) \tag{24}$$

$$i_o(l+1) \approx \frac{T_s}{L} v_{oB}(l) + \left(1 - \frac{RT_s}{L}\right) i_{oB}(l) \tag{25}$$

$$i_o(m+1) \approx \frac{T_s}{L} v_{oC}(m) + \left(1 - \frac{RT_s}{L}\right) i_{oC}(m) \tag{26}$$

Como cada convertidor será programado por separado, y cada convertidor tendrá sus tiempos, se establecen distintas variables de tiempo para cada uno. De esta forma, los tiempos de uno no influyen en los tiempos de otro.

5.1.3. Función de costo

Teniendo en cuenta lo del capítulo anterior, cada convertidor matricial tendrá la función de costo utilizada antes presentada. Los estados de cada convertidor se mantienen, por lo que el objetivo de la función de costo será encontrar los vectores y los tiempos de aplicación de cada uno.

Para encontrar dichos vectores y tiempos, será clave el mantener variables distintas para cada función de costo, por lo mismo si antes se tenía una única variable k que representaba el instante de tiempo, ahora se suman $l \ge m$.

$$g(k+1) = d_{1A}g_{1A} + d_{2A}g_{2A}$$
(27)

$$g(l+1) = d_{1B} g_{1B} + d_{2B} g_{2B}$$
(28)

$$g(m+1) = d_{1C} g_{1C} + d_{2C} g_{2C}$$
(29)

5.1.4. Patrón de conmutación

Cada convertidor matricial, como se indicó anteriormente, tendrá su propio patrón de conmutación con el cual se aplicarán los vectores seleccionados.

Figura 35: Patrón de conmutación para los vectores óptimos del convertidor matricial A.

PSfrag

Figura 36: Patrón de conmutación para los vectores óptimos del convertidor matricial B.

Figura 37: Patrón de conmutación para los vectores óptimos del convertidor matricial C.

Se tendrán tiempos T_o , T_1 y T_2 para los convertidores A, B y C, por separado, ya que estos son calculados desde la función de ganancia que también es calculada por cada convertidor. Se mantiene que en cada caso de vector V_oC , serán aplicadas las combinaciones de switches que han sido declarados como estados nulos.
5.1.5. Algotirmo implementado

En la Figura 38 se observa cómo se realizará el algoritmo. En el primer paso, se miden las corrientes de $A, B \neq C$ con las cuales será calculado el primer g_0 , de la forma en la que se presentó el algoritmo para el convertidor matricial monofásico de la Figura 20. Como se mencionó anteriormente, será importante distinguir variables para cada convertidor. Los pasos se realizan de manera igual en adelante. Los instantes de tiempo para el primer convertidor matricial será definido como k, para el segundo l y para el tercero m.

Figura 38: Algoritmo aplicado para la topología de tres celdas.

5.1.6. Resultados de simulación

Estado Estacionario

En estado estacionario, se evalúa el comportamiento del control bajo las condiciones presentadas en la Tabla 8.

Variable	Descripción	Valor
v_i	Voltaje de la fuente	540 [V]
f_i	Frecuencia de fuente	50 [Hz]
T_s	Tiempo de muestreo	$10 \; [\mu s]$
R	Carga resistiva	$10 \ [\Omega]$
L	Carga inductiva	10 [mH]
i _o	Amplitud de referencia	20, 50 [Apk]
f_o	Frecuencia de referencia	50 [Hz]

Tabla 8: Parámetros pruebas control predictivo a frecuencia fija del convertidor matricial monofásico.

Desde la Figura 39 a la Figura 41 se observan los resultados del control predictivo a frecuencia fija para la topología de tres celdas. El control se quiso llevar al límite, es por ello que aparte de las pruebas a 20 [Apk] se realizan pruebas con corriente de 50 [Apk]. Más allá de los 50 [A], el control no alcanzaba la corriente máxima y la curva sinusoidal sufre deformaciones. Las Figuras 39 y 40 corresponden a las gráficas de corriente y voltaje respectivamente para 20 [Apk], mientras que las figuras 41 y 42 son de corriente y voltaje para una corriente de referencia a 50 [Apk] respectivamente. Estado Transiente

Para obtener los resultados en estado transiente, a partir de los 0.04 [s] se doblará el valor de la corriente de salida. Desde la Figura 43 a la Figura 44 se presentan los resultados en estado transiente. En este caso, para la respuesta dinámica nuevamente se realiza un cambio sólo en la corriente sin variar la frecuencia de salida.

Discusión

De acuerdo a los resultados obtenidos, se puede decir que el control predictivo a frecuencia fija funciona correctamente de acuerdo a lo que se requería. El seguimiento de corriente funciona bien en ambos casos, para 20 y 50 [Apk], donde se obtienen señales sinusoidales de 50 [Hz] tal como se esperaba del control aplicado. Nuevamente, los resultados muestran que a medida que se aumenta la corriente peak de referencia, se obtienen mejores resultados tanto en las curvas de voltaje como de corriente.

En estado transiente incluso, el control predictivo a frecuencia fija funciona de manera correcta. El único imprevisto es como se podía prever que en el caso del control con corriente de 50 [Apk], donde al aplicar un escalón con el cual se supera la corriente máxima con la que funciona correctamente el control y comienza a sufrir deformaciones en la parte superior de la curva, como se observa en la Figura ??.(a).

De los resultados en estado transiente, se puede ver que la respuesta dinámica ante el escalón aplicado es rápida. En el caso de la topología con 20 [Apk] la respuesta varía entre 0.01 [ms] y 0.15 [ms], mientras que para la corriente de referencia de 50 [Apk] esta respuesta es entre 0.06 y 0.4 [ms]. Estos tiempos son distintos ya que el tiempo depende del punto en el que encuentra a la curva el momento donde se aplica el escalón. Por ejemplo, en el caso de ??.(c), se puede observar que la fase C tiene una rápida respuesta al encontrar a la corriente ya que se encuentra en el lado negativo de la curva. Por otro lado, la fase B se encuentra casi en el punto de mayor corriente, por eso demora más en llegar a la referencia.

(b) Corrientes medidas y señales de referencia.

Figura 39: Resultados de corriente control predictivo a frecuencia fija aplicado a la topología de tres celdas a 50 [Hz] y 20 [A], con un tiempo de muestreo de 10 $[\mu s]$.

(b) Voltajes en las cargas por separado

Figura 40: Resultados de voltaje control predictivo a frecuencia fija aplicado a la topología de tres celdas a 50 [Hz] y 20 [A], con un tiempo de muestreo de 10 [μ s].

(b) Corrientes medidas y señales de referencia.

Figura 41: Resultados de corriente control predictivo a frecuencia fija aplicado a la topología de tres celdas a 50 [Hz] y 50 [A], con un tiempo de muestreo de 10 $[\mu s]$.

(b) Voltajes en las cargas por separado.

Figura 42: Resultados de voltaje control predictivo a frecuencia fija aplicado a la topología de tres celdas a 50 [Hz] y 50 [A], con un tiempo de muestreo de 10 [μ s].

(b) Diferencia entre corriente de referencia y corriente medida al instante que se aplica el escalón.

Figura 43: Resultados de corriente en estado transiente del control predictivo a frecuencia fija aplicado a la topología de tres celdas, a 50 [Hz] y 20 [A], con un tiempo de muestreo de 10 $[\mu s]$.

(b) Patrón de conmutación

Figura 44: Resultados de voltaje en estado transiente del control predictivo a frecuencia fija aplicado a la topología de tres celdas, a 50 [Hz] y 20 [A], con un tiempo de muestreo de 10 $[\mu s]$.

• Análisis de THD y Error Absoluto

Los resultados del THD del control predictivo a distintas frecuencias y amplitudes de corriente se observan de la Figura 45 a 56. Para este caso, se evalúa el THD para el control a distintos tiempos de muestreo de 10 [μ s], 20 [μ s] y 50 [μ s], y corrientes de 20 y 50 [Apk]. Los resultados se presentan en la tabla 8.

T_s	i_o	$\% v_{oa}$	$\% v_{ob}$	$\% v_{oc}$	$\% i_{oa}$	$\% i_{ob}$	$\% i_{oc}$
$10 \ [\mu s]$	20 [A]	119.02%	117.66%	118.45%	0.48%	0.46%	0.49%
$20 \ [\mu s]$	20 [A]	117.47%	116.67%	118.10%	0.91%	0.92%	0.93%
$50 \ [\mu s]$	20 [A]	118.21%	117.85%	116.17%	2.30%	2.26%	2.25%
$10 \; [\mu s]$	50 [A]	63.74%	63.63%	63.70%	0.20%	0.20%	0.20%
$20 \ [\mu s]$	50 [A]	56.95%	56.93%	56.91%	0.41%	0.41%	0.41%
$50 \ [\mu s]$	50 [A]	54.31%	53.69%	54.02%	1.11%	1.08%	1.09%

Tabla 9: Resultados porcentaje THD del control predictivo a frecuencia fija para la topología de tres celdas en el convertidor matricial monofásico.

Los resultados presentados en la Tabla 9 muestran nuevamente un bajo % THD para la corriente y un mayor para el voltaje, el cual desciende a mayores frecuencias y corrientes peak.

Como fue en el caso anterior para el convertidor matricial monofásico, se logran muy bajos porcentajes de THD en el caso de las corrientes, producto de que es ésta la variable que se controla, en tanto el voltaje tiene altos porcentajes de THD sobre todo cuando la corriente desciende. El error del control se calcula mediante la fórmula vista en el capítulo anterior. Los resultados se presentan en la Tabla 11.

T_s	i_o	Error $(e_{sim}A)$	Error $(e_{sim}B)$	Error $(e_{sim}C)$
$10 \ \mu s$	20	0.3982%	0.4811%	0.5104%
$20 \ \mu s$	20	0.7817%	0.8730%	0.9011%
$50 \ \mu s$	20	1.9654%	2.0556%	2.0897%
$10 \ \mu s$	50	0.2705%	0.4904%	0.7072%
$20 \ \mu s$	50	0.4333%	0.6880%	0.9906%
$50 \ \mu s$	50	1.0769%	1.3070%	1.5609%

Tabla 10: Resultados error absoluto de corriente del control predictivo a frecuencia fija aplicado a la topología de tres celdas en estado estacionario.

T_s	i_o	Error $(e_{sim}A)$	Error $(e_{sim}B)$	Error $(e_{sim}C)$
$10 \ \mu s$	20	0.5035%	0.7274%	0.8499%
$20 \ \mu s$	20	0.9249%	1.1392%	1.3184%
$50 \ \mu s$	20	2.2453%	2.4237%	2.5275%

Tabla 11: Resultados error absoluto de corriente del control predictivo a frecuencia fija aplicado a la topología de tres celdas en estado transiente.

Se pueden observar que se obtienen errores pequeños, donde nuevamente el mayor porcentaje lo presenta el control con un mayor tiempo de muestreo T_s producto de que esto significa que hay un espacio mayor de tiempo entre un punto y otro de ejecución del algoritmo. También se puede observar un comportamiento que tienen en común todos los ejemplos, y es que la fase *B* tiene un mayor error que la fase *A*, y a su vez la fase *C* tiene un mayor error que las dos anteriores. Esto se debe a que las señales de referencia están desfasadas en 120°, y mientras la fase *A* parte desde cero cuando t = 0, las otras dos dos comienzan con el desfase esperado. Como todos los controles parten del cero, las fases *B* y *C* se demoran un pequeño tiempo en alcanzar la referencia, y ese tiempo se ve reflejado en el error de la tabla anterior.

Figura 45: THD corrientes control predictivo aplicado a la topología de 3 celdas, con tiempo de muestreo de 10 [μ s] y corriente de 20 [Apk].

Figura 46: THD voltajes control predictivo aplicado a la topología de 3 celdas, con tiempo de muestreo de 10 $[\mu s]$ y corriente de 20 [Apk].

Figura 47: THD corrientes control predictivo aplicado a la topología de 3 celdas, con tiempo de muestreo de 20 [μ s] y corriente de 20 [Apk].

Figura 48: THD voltajes control predictivo aplicado a la topología de 3 celdas, con tiempo de muestreo de 20 $[\mu s]$ y corriente de 20 [Apk].

Figura 49: THD corrientes control predictivo aplicado a la topología de 3 celdas, con tiempo de muestreo de 50 $[\mu s]$ y corriente de 20 [Apk].

Figura 50: THD voltajes control predictivo aplicado a la topología de 3 celdas, con tiempo de muestreo de 50 $[\mu s]$ y corriente de 20 [Apk].

Figura 51: THD corrientes control predictivo aplicado a la topología de 3 celdas, con tiempo de muestreo de 10 $[\mu s]$ y corriente de 50 [Apk].

Figura 52: THD voltajes control predictivo aplicado a la topología de 3 celdas, con tiempo de muestreo de 10 $[\mu s]$ y corriente de 50 [Apk].

Figura 53: THD corrientes control predictivo aplicado a la topología de 3 celdas, con tiempo de muestreo de 20 [μ s] y corriente de 50 [Apk].

Figura 54: THD voltajes control predictivo aplicado a la topología de 3 celdas, con tiempo de muestreo de 20 $[\mu s]$ y corriente de 50 [Apk].

Figura 55: THD corrientes control predictivo aplicado a la topología de 3 celdas, con tiempo de muestreo de 50 $[\mu s]$ y corriente de 50 [Apk].

Figura 56: THD voltajes control predictivo aplicado a la topología de 3 celdas, con tiempo de muestreo de 50 $[\mu s]$ y corriente de 50 [Apk].

5.2. Topología multinivel con 9 celdas

5.2.1. Esquema de control

Para la topología de 9 celdas, se utilizará nuevamente el convertidor matricial monofásico. Se realizará un control predictivo a frecuencia fija para este nuevo esquema, utilizando como base el control predictivo aplicado en las topologías revisadas en capítulos anteriores. Para este caso, cada uno de los 9 convertidores matriciales estarán alimentados por una fuente trifásica, y cada fase de salida está compuesta por 3 convertidores, como se ve en la Figura 57.

Figura 57: Esquema de control Convertidor Matricial Monofásico

La fase A está compuesta por los convertidores matriciales que serán denominados como A_1 , A_2 y A_3 , alimentados por las fuentes VsA_1 , VsA_2 y VsA_3 . Así mismo será el caso para las fases B y C. El proceso en el esquema es el mismo que en los casos anteriores. La diferencia se establece que en este caso, al ser 9 convertidores matriciales y estar definida cada fase o pierna por tres convertidores, la predicción que antes se hacía por convertidor ahora se hará para los tres convertidores que representan cada pierna. Más adelante en este capítulo se presentará más en profundidad.

5.2.2. Modelo de predicción

Para realizar el modelo de predicción, en este caso habrá que obtener el valor de la carga correspondiente a cada fase de esta topología, además de obtener un modelo que represente de manera óptima dicha carga. Como se explicó antes, cada fase de salida estará determinada por tres convertidores matriciales, por lo tanto la salida A estará definida por los convertidores A_1 , A_2 y A_3 , la fase B por B_1 , B_2 y B_3 , y la C por C_1 , C_2 y C_3 .

El modelo básicamente seguirá siendo el mismo que para el caso de la topología de tres celdas, el cambio mayor se producirá al momento de obtener la función de costos.

Para este caso, el $v_o(k)$ que antes se calculaba de cada convertidor, ahora se calcula a partir de cada conjunto de convertidores que define cada fase, mientras que la corriente se mantiene como antes ya que según la configuración de los convertidores por cada fase se obtiene una única corriente de salida.

$$v_{oA}(k) = v_{oA1}(k) + v_{oA2}(k) + v_{oA3}(k)$$
(30)

$$v_{oB}(l) = v_{oB1}(l) + v_{oB2}(l) + v_{oB3}(l)$$
(31)

$$v_{oB}(m) = v_{oB1}(m) + v_{oB2}(m) + v_{oB3}(m)$$
(32)

$$i_{oA}(k+1) \approx \frac{T_s}{L} v_{oA}(k) + \left(1 - \frac{RT_s}{L}\right) i_{oA}(k)$$
(33)

$$i_{oB}(l+1) \approx \frac{T_s}{L} v_{oB}(l) + \left(1 - \frac{RT_s}{L}\right) i_{oB}(l) \tag{34}$$

$$i_{oC}(m+1) \approx \frac{T_s}{L} v_{oC}(m) + \left(1 - \frac{RT_s}{L}\right) i_{oC}(m) \tag{35}$$

5.2.3. Función de costo

Teniendo en cuenta lo del capítulo anterior, cada convertidor matricial tendrá la función de costo antes presentada. En este caso, el mayor cambio existe en que mientras antes se evaluaban los 6 pares de vectores de un convertidor, ahora habrá que evaluar 6 pares por cada convertidor que compone cada fase. Los estados de cada convertidor se mantienen, por lo que el objetivo de la función de costo será encontrar la combinación de vectores que al aplicarse a los convertidores mejor represente la función de referencia, respetando los tiempos de aplicación de cada uno.

Para encontrar dichos vectores y tiempos, será clave el mantener variables distintas para cada función de costo, tal como fue en el caso de la topología anterior con tres convertidores. Es por esto mismo que las variables k, l y m se volverán a ocupar en este momento.

$$g(k+1) = d_{1A}g_{1A} + d_{2A}g_{2A}$$
(36)

$$g(l+1) = d_{1B} g_{1B} + d_{2B} g_{2B}$$
(37)

$$g(m+1) = d_{1C} g_{1C} + d_{2C} g_{2C}$$
(38)

5.2.4. Patrón de conmutación

Para el caso de la topología de 9 celdas, nuevamente se presenta la importancia de que se separarán cada 3 convertidores las cargas en las cuales están definidas como A, $B \ge C$. En los casos anteriores, cada función de costo se asociaba a cada convertidor, pero en este caso como cada función de costo tiene asociado a tres convertidores, la aplicación de vectores es distinta.

Figura 58: Patrón de conmutación para los vectores óptimos.

Para cada instante de tiempo, la función de costo permitirá obtener los vectores para los 3 convertidores asociados, y estos vectores son aplicados en el mismo instante de tiempo. En el caso de la fase A, vector V_1 seleccionado tanto para A1, A2 y A3 es aplicado al mismo instante, como se observa en la Figura 58. De la misma forma, serán aplicados los vectores para la fase B y C. Se mantiene que para la aplicación del vector V_0 se aplican los estados nulos.

5.2.5. Algotirmo implementado

Para el caso de la topología de 9 celdas, es necesario probar todas las combinaciones posibles establecidas capítulos anteriores, esto significa probar cada uno de los 6 espacios creados por vectores de la Figura 18 que representan los estados de los switches. Es decir, si se ejecuta el algoritmo pensando en la fase A, se deberán combinar los 6 estados del convertidor A1 con los 6 del convertidor A2 y los 6 del convertidor A3, lo que hacen 216 sectores o pares de vectores distintos a evaluar en cada instante. Estas 216 combinaciones distintas tienen en cuenta los vectores de los cuales se elegirá una, la cual contiene los pares de vectores a aplicar para los 3 convertidores recién nombrados. En la Figura 59 se puede ver esto reflejado más claramente, en la cual para poder aplicar los vectores 1 y 2 tanto para las fases A, B y C es necesario pasar por 3 ciclos antes, un ciclo dentro de otro, para abarcar todas las combinaciones posibles y encontrar la que más se adapte al control.

Figura 59: Algoritmo aplicado para la topología de nueve celdas.

5.2.6. Resultados de simulación

Estado Estacionario

Los resultados en estado estacionario se obtienen bajo los parámetros presentados en la Tabla 12, los cuales son los mismos parámetros utilizados anteriormente. Se comprobará el funcionamiento del control sobre esta topología de 9 celdas ante distintas frecuencias de salida y corrientes peak de referencia. Estos resultados son mostrados desde la Figura 60 a 63.

Variable	Descripción	Valor
v_i	Voltaje de la fuente	540 [V]
f_i	Frecuencia de fuente	50 [Hz]
T_s	Tiempo de muestreo	$10 \; [\mu s]$
R	Carga resistiva	$10 \ [\Omega]$
L	Carga inductiva	10 [mH]
i _o	Amplitud de referencia	20, 50 [Apk]
f_o	Frecuencia de referencia	50 [Hz]

Tabla 12: Parámetros pruebas control predictivo a frecuencia fija del convertidor matricial monofásico.

Los resultados del estado estacionario, muestran que el control funciona correctamente obteniendo buenas señales de corriente y voltaje. En cuanto al voltaje, se obtienen valores bastante altos, es el caso que se observa en la Figura 63.(b) para una señal de 150 [Apk], donde los voltajes alcanzan valores sobre los 2000 [V]. En ambos casos, para 150 [Apk] y sobre todo para 20 [Apk], se puede observar que en algunos instantes se provocan algunos voltajes más alto de que el resto de la señal, lo cual puede suceder ya que no se está estableciendo ningún tipo de control sobre esta variable.

• Estado Transiente

Para los resultados en estado transiente, a partir de cierto instante de tiempo se realiza una variación en la amplitud de la señal de referencia para comprobar la respuesta dinámica del sistema. Los resultados se observan a partir de la Figura 64 a la Figura 65.

Discusión

De los resultados, se puede decir que en ambos casos se cumple con lo esperado. Se obtienen corrientes sinusoidales, incluso para corrientes se obtienen buenas respuestas ante el escalón aplicado, pero los resultados en cuanto al voltaje no son los esperados. Esta respuesta entrega picos demasiado altos de voltaje en el instante de aplicación del escalón, lo cual independiente de que el voltaje no sea una variable bajo control en esta aplicación, no se puede pasar por alto.

En comparación con los otros controles realizados anteriormente, con este control se puede trabajar con corrientes más altas, pero es un control mucho más inestable.

Figura 60: Resultados de corriente control predictivo a frecuencia fija aplicado a la topología multinivel de 9 celdas a 10 $[\mu s]$ y 20 [A].

Figura 61: Resultados de voltaje control predictivo a frecuencia fija aplicado a la topología multinivel de 9 celdas a 10 $[\mu s]$ y 20 [A].

Figura 62: Resultados de corriente control predictivo a frecuencia fija aplicado a la topología multinivel de 9 celdas a 10 $[\mu s]$ y 150 [A].

Figura 63: Resultados de voltaje control predictivo a frecuencia fija aplicado a la topología multinivel de 9 celdas a 10 $[\mu s]$ y 150 [A].

(b) Patrón de conmutación

Figura 64: Resultados de corriente en estado transiente del control predictivo a frecuencia fija aplicado a la topología multinivel de 9 celdas a 50 [Hz] y 20 [A].

Figura 65: Resultados de voltaje en estado transiente del control predictivo a frecuencia fija aplicado a la topología multinivel de 9 celdas a 50 [Hz] y 20 [A].

• Análisis de THD y Error Absoluto

Todos los datos de THD presentados en las Figuras 66 a 77 están recopilados en la Tabla 13.

T_s	i_o	$\% v_{oa}$	$\% v_{ob}$	$\% v_{oc}$	$\% i_{oa}$	$\% i_{ob}$	$\% i_{oc}$
$10 \ [\mu s]$	20 [A]	80.81 %	79.99%	79.29%	0.35%	0.33%	0.34%
$20 \ [\mu s]$	20 [A]	75.13%	74.47%	74.27%	0.68%	0.77%	0.78%
$50 \ [\mu s]$	20 [A]	75.54%	75.04%	71.70%	1.79%	1.83%	1.75%
$10 \ [\mu s]$	150 [A]	50.98%	50.80%	50.87%	0.06%	0.06%	0.05%
$20 \ [\mu s]$	150 [A]	34.91%	34.95%	35.01%	0.10%	0.11%	0.10%
$50 \ [\mu s]$	150 [A]	22.54%	23.21%	23.27%	0.24%	0.27%	0.27%

Tabla 13: Resultados porcentaje THD del control predictivo a frecuencia fija para la topología de nueve celdas en el convertidor matricial monofásico.

Estos resultados de THD muestran que en general en términos de distorsión armónica, la configuración que logra mejores resultados es la de nueve celdas. Las señales de corriente obtenidas tienen muy poco ripple, tal como se muestran en la Figura 62, donde se observa una señal sinusoidal muy pareja a diferencia de algunos casos en capítulos anteriores, y eso se ve reflejado en el cálculo del THD.

El voltaje incluso logra mejores números de THD en comparación con las topologías anteriores, y los mejores resultados se encuentran cuando el control es aplicado bajo un amplio tiempo de muestreo y una mayor corriente de referencia.

En el caso del error absoluto, nuevamente se vuelve a ocupar la fórmula trabajada anteriormente. El cálculo se realiza por fase, y los resultados se presentan en la Tabla 15.

El error es calculado con los resultados de cada fase y cada señal de referencia por fase. En este caso, el error muestra porcentajes de error bastante bajos, lo que reafirma que el control cumple con su objetivo, ya que la única variable que es controlada es la corriente.

Comparando los errores con el mismo tiempo de muestreo y amplitud de corriente de referencia con el caso de tres celdas, como los valores con corriente de 20 [Apk], los

T_s	i_o	Error $(e_{sim}A)$	Error $(e_{sim}B)$	Error $(e_{sim}C)$
$10 \ [\mu s]$	20 [Apk]	0.3562%	0.3809%	0.3760%
$20 \ [\mu s]$	20 [Apk]	0.5976%	0.6413%	0.6480%
$50 \ [\mu s]$	20 [Apk]	1.3977%	1.3562%	1.4599%
$10 \ [\mu s]$	150 [Apk]	0.3003%	0.7220%	0.7297%
$20 \ [\mu s]$	150 [Apk]	0.4805%	0.7220%	1.0269%
$50 \ [\mu s]$	150 [Apk]	1.1070%	1.3222%	1.5541%

Tabla 14: Resultados error de corriente calculado del control predictivo a frecuencia fija aplicado a la topología de tres celdas en estado estacionario.

T_s	i _o	Error $(e_{sim}A)$	Error $(e_{sim}B)$	Error $(e_{sim}C)$
$10 \ [\mu s]$	20 [A]	0.5550%	0.6066%	0.6222%
$20 \ [\mu s]$	20 [A]	0.8764%	0.9787%	0.9544%
$50 \ [\mu s]$	20 [A]	2.0614%	2.2040%	2.1621%

Tabla 15: Resultados error de corriente calculado del control predictivo a frecuencia fija aplicado a la topología de tres celdas en estado transiente.

errores son menores en el caso de la topología de 9 celdas son menores. Esto puede deberse a la cantidad de combinaciones de switches que existe, ya que pensando en la topología de 9 celdas, al ser 3 convertidores matriciales por fase, para predecir la corriente existe una cantidad de 216 combinaciones de los estados de switches, mientras que para la topología de 3 celdas son solo existen 6 estas combinaciones disponibles.

Figura 66: THD corrientes control predictivo aplicado a la topología de 9 celdas, con tiempo de muestreo de 10 $[\mu s]$ y corriente de 20 [Apk].

Figura 67: THD voltajes control predictivo aplicado a la topología de 9 celdas, con tiempo de muestreo de 10 $[\mu s]$ y corriente de 20 [Apk].

Figura 68: THD corrientes control predictivo aplicado a la topología de 9 celdas, con tiempo de muestreo de 20 $[\mu s]$ y corriente de 20 [Apk].

Figura 69: THD voltajes control predictivo aplicado a la topología de 9 celdas, con tiempo de muestreo de 20 $[\mu s]$ y corriente de 20 [Apk].

Figura 70: THD corrientes control predictivo aplicado a la topología de 9 celdas, con tiempo de muestreo de 50 $[\mu s]$ y corriente de 20 [Apk].

Figura 71: THD voltajes control predictivo aplicado a la topología de 9 celdas, con tiempo de muestreo de 50 $[\mu s]$ y corriente de 20 [Apk].

Figura 72: THD corrientes control predictivo aplicado a la topología de 9 celdas, con tiempo de muestreo de 10 $[\mu s]$ y corriente de 150 [Apk].

Figura 73: THD voltajes control predictivo aplicado a la topología de 9 celdas, con tiempo de muestreo de 10 [μ s] y corriente de 150 [Apk].

Figura 74: THD corrientes control predictivo aplicado a la topología de 9 celdas, con tiempo de muestreo de 20 $[\mu s]$ y corriente de 15 [Apk].

Figura 75: THD voltajes control predictivo aplicado a la topología de 9 celdas, con tiempo de muestreo de 20 [μ s] y corriente de 150 [Apk].

Figura 76: THD corrientes control predictivo aplicado a la topología de 9 celdas, con tiempo de muestreo de 50 $[\mu s]$ y corriente de 150 [Apk].

Figura 77: THD voltajes control predictivo aplicado a la topología de 9 celdas, con tiempo de muestreo de 50 $[\mu s]$ y corriente de 150 [Apk].

6. Conclusiones y Trabajo Futuro

A continuación se presentarán las conclusiones obtenidas tras aplicar un Control Predictivo a Frecuencia Fija al Convertidor Matricial Monofásico, a la topología de tres celdas y a la topología de nueve celdas.

6.1. Conclusiones

El trabajo se realizó utilizando el entorno de programación Matlab Simulink. Se llevó a cabo un Control Predictivo a Frecuencia Fija, cuyo principal objetivo es la obtención de corrientes sinusoidales de amplitud y frecuencia arbitrario.

El control predictivo a frecuencia fija, en un principio fue puesto a prueba en el convertidor matricial monofásico simple para corroborar su funcionamiento en él. Los resultados demostraron el buen funcionamiento de este control, tanto en estado estacionario como en estado transiente, por lo que es una alternativa válida para poder realizar una implementación sin necesidad de enlace DC, teniendo en cuenta que para realizar la implementación experimental es necesario aplicar la estrategia de cuatro pasos presentada durante el Capítulo 2.

En cuanto al control para la topología de tres celdas, se obtienen resultados similares al convertidor matricial monofásico. El control resulta efectivo para cada una de las fases por separado, ya que cada fase mantiene corrientes sinusoidales con un ripple bastante bajo y con un desfase de 120° una de otra.

Para el caso de la topología de nueve celdas, se encuentran los mejores resultados en cuanto al control de corriente. Señales sinusoidales con el menor ripple de las pruebas realizadas, y además la posibilidad de llegar hasta los 150 [A]. El problema ocurre en que las pruebas de voltaje entregan ya en estado estacionario una señal que a medida que entrega menos corriente más voltajes que escapan de la señal sinusoidal se encuentran, problema que incrementa en estado transiente donde la aplicación de un escalón de corriente hace que el voltaje alcance valores muy por encima de lo esperado. Todos estos problemas hacen del control predictivo aplicado a la topología de nueve celdas poco seguro para realizar una implementación.

6.2. Trabajo futuro

El trabajo realizado actualmente muestra la posibilidad de realizar este control predictivo a frecuencia fija, y a raíz de este trabajo realizado también se presenta la posibilidad de mejora en muchos aspectos.

El primer paso, sería la implementación del control predictivo a frecuencia fija de manera experimental, para comprobar el funcionamiento del control a bajas corrientes, junto con esto también establecer como uno de los objetivos el bajar el porcentaje de THD de voltaje. En un principio, sin las circunstancias actuales de pandemia, la idea era implementar un control utilizando IGBT's como switches, y una FPGA's con una dSpace, tanto para el desarrollo del control y la medición de variables respectivamente. Esto como trabajo para cuando se pueda realizar trabajo presencial.

Antes de implementar las topologías de tres y nueve celdas, será necesario realizar primero algún tipo de control sobre el voltaje de salida. Los resultados mostraron que si bien en la topología de tres celdas no existían mayores inconvenientes, para el caso de la topología de nueve celdas si se encontraron problemas sobre todo en estado transiente, por lo cual el primer paso será validar algún control o aplicar algún filtro que permita disminuir este tipo de problemas, para después poder realizar una implementación segura.

Referencias

- [1] G. de Chile, "Estrategia nacional de energía 2012-2030," Febrero 2012.
- [2] M. Venturini, "A new sine wave in sine wave out, conversion technique which eliminates reactive elements," *Proc. Powercon* 7, 1980.
- [3] E. Yamamoto, H. Hara, T. Uchino, M. Kawaji, T. J. Kume, J. K. Kang, and H.p. Krug, "Development of mcs and its applications in industry [industry forum]," *IEEE Industrial Electronics Magazine*, vol. 5, no. 1, pp. 4–12, 2011.
- [4] L. C. Phei and R. T. Naayagi, "Matrix converter for grid connected wind energy conversion systems," in 2018 IEEE Innovative Smart Grid Technologies - Asia (ISGT Asia), pp. 1005–1009, May 2018.
- [5] M. Moghaddami and A. Sarwat, "A three-phase ac-ac matrix converter with simplified bidirectional power control for inductive power transfer systems," in 2018 IEEE Transportation Electrification Conference and Expo (ITEC), pp. 380–384, 2018.
- [6] L. Guan, Z. Wang, P. Liu, and J. Wu, "A three-phase to single-phase matrix converter for bidirectional wireless power transfer system," in *IECON 2019 - 45th Annual Conference of the IEEE Industrial Electronics Society*, vol. 1, pp. 4451–4456, 2019.
- [7] M. Rivera, S. Rojas, P. Wheeler, and J. Rodriguez, "A predictive control strategy for a single-phase ac-ac converter," in 2016 7th Power Electronics and Drive Systems Technologies Conference (PEDSTC), pp. 608–613, IEEE, 2016.
- [8] A. Formentini, S. Pipolo, A. Trentin, and P. Zanchetta, "Optimal control of matrix converters," in 2019 21st European Conference on Power Electronics and Applications (EPE '19 ECCE Europe), pp. 1–8, 2019.
- [9] T. Nguyen, H. Nguyen, T. D. Nguyen, and H. Lee, "Simplified model predictive control for ac/dc matrix converters with fixed switching frequency," in 2019 10th International Conference on Power Electronics and ECCE Asia (ICPE 2019 -ECCE Asia), pp. 1–6, 2019.

- [10] M. Rivera, J. Munoz, C. Baier, J. Rodriguez, J. Espinoza, V. Yaramasu, B. Wu, and P. Wheeler, "A simple predictive current control of a single-phase matrix converter," in 4th International Conference on Power Engineering, Energy and Electrical Drives, pp. 235–239, 2013.
- [11] S. Rojas, M. Rivera, and P. Wheeler, "Control techniques for a single-phase matrix converter," in 2019 IEEE CHILEAN Conference on Electrical, Electronics Engineering, Information and Communication Technologies (CHILECON), pp. 1–7, 2019.
- [12] M. Vijayagopal, C. Silva, L. Empringham, and L. de Lillo, "Direct predictive current-error vector control for a direct matrix converter," *IEEE Transactions on Power Electronics*, vol. 34, no. 2, pp. 1925–1935, 2019.
- [13] J. Rodriguez, S. Bernet, B. Wu, J. O. Pontt, and S. Kouro, "Multilevel voltagesource-converter topologies for industrial medium-voltage drives," *IEEE Transactions on Industrial Electronics*, vol. 54, no. 6, pp. 2930–2945, 2007.
- [14] J. Wang, B. Wu, and N. R. Zargari, "High-power multi-modular matrix converters with sinusoidal input/output waveforms," in 2009 35th Annual Conference of IEEE Industrial Electronics, pp. 542–547, 2009.
- [15] F. Gavilán, S. Toledo, M. Rivera, D. Caballero, E. Maqueda, and R. Gregor, "Predictive current control strategy for a direct matrix converter with modulated switching pattern," in 2018 IEEE International Conference on Automation/XXIII Congress of the Chilean Association of Automatic Control (ICA-ACCA), pp. 1–6, 2018.
- [16] X. Liu, X. Yin, Z. Zeng, S. Tang, and J. Wang, "A simplified modulated model predictive control for direct matrix converter," in 2020 IEEE Energy Conversion Congress and Exposition (ECCE), pp. 2923–2927, 2020.

7. Anexos

7.1. Control Predictivo a Frecuencia Fija para el Convertidor Matricial Monofásico

7.1.1. Parámetros del sistema, archivo .m

```
% Simulación Matrix Monofásico
close all
clear all
clc
% Voltage de Fuente RMS
Vs = 540;
% Frecuencia de Fuente (Hz)
fs = 50;
Lf = 400e-6;
                %[H]
Rf = 0.5;
                %0.01; %[Ohm]
Cf = 25e-6;
                %(7/sqrt(3))*10<sup>-6</sup>;%25e-6; %F
Rd = 56;
R = 10;
               % Valor resistencia
L = 10e-3;
               % Valor Inductancia
Ts = 50e-6;
                % Tiempo de Muestreo
Tm = 1e-6;
Iref = 50;
               % Amplitud de Salida de Referencia
fo = 50;
                % Frecuencia de Salida
escalon = 5;
                % Escalon a aplicar Estado Transiente
```

simular = 0.183333333333333; % Tiempo de Simulación

7.1.2. Parámetros del MC, archivo .h

```
// Estados válidos del MC
int state[9][6]={{0,0,1,0,1,0},{0,0,1,1,0,0},{0,1,0,1,0,0},
,{0,1,0,0,0,1},{1,0,0,0,0,1},{1,0,0,0,1,0},{0,0,1,0,0,1},
{0,1,0,0,1,0},{1,0,0,1,0,0};
```

```
double min,iok,iok1,vout,g,tsp,L,R,io,vA,vB,vC,iref;
double vsAB,vsBC,vsCA,vsA,vsB,vsC,isA,isB,isC,ci1,ci2,ci3,ci4;
double vsalfa,vsbeta,isalfa,isbeta;
double iA,iB,iC,valfa,vbeta,ialfa,ibeta,is_alfa,is_beta,fA,Tm;
int k,kopt;
double contador=1;
double g0,g1,g2;
```

```
// Vectores a evaluar
int vec[6][2]={{0,1},{1,2},{2,3},{3,4},{4,5},{5,0}};
double T1_1, T2_1, T0_1;
double T1, T2, T0;
int vec_1, vec_2,vec_3,vec_4;
```

7.1.3. Modelo del convertidor en Simulink, bloque S-Function Builder

```
// Inicio del Ciclo
if(contador == 1)
{
    iref = in[0];
    R = in[1];
    L = in[2];
```

```
tsp = in[3];
vA = in[4];
vB = in[5];
vC = in[6];
io = in[7];
Tm = in[8];
min=100000000;
// Función de costo g0, comparación corriente calculada
//y corriente de referencia
g0 = (iref-(1-R*tsp/L)*io)*(iref-(1-R*tsp/L)*io);
// Comparación de los estados del MC
for(k=0;k<6;k++)</pre>
{
    // Cálculo
    vout = (state[vec[k][0]][0]-state[vec[k][0]][3])*vA+
    (state[vec[k][0]][1]-state[vec[k][0]][4])*vB+
    (state[vec[k][0]][2]-state[vec[k][0]][5])*vC;
    iok1 = tsp*vout/L+(1-R*tsp/L)*io;
    g1 = (iref-iok1)*(iref-iok1);
    vout = (state[vec[k][1]][0]-state[vec[k][1]][3])*vA+
    (state[vec[k][1]][1]-state[vec[k][1]][4])*vB+
    (state[vec[k][1]][2]-state[vec[k][1]][5])*vC;
    iok1 = tsp*vout/L+(1-R*tsp/L)*io;
    g2 = (iref-iok1)*(iref-iok1);
    // Cálculo tiempos de aplicación de vectores
```

```
T1_1 = ((g0*g2)/(g1*g2 + g0*g2 + g0*g1));
        T2_1 = ((g0*g1)/(g1*g2 + g0*g2 + g0*g1));
        TO_1 = 1 - T1_1 - T2_1;
        g = T1_1*g1 + T2_1*g2;
        // Obtención función de costo de mínimo valor
        if(g<min)
        {
           min = g;
           TO = (tsp/Tm)*TO_1;
           T1 = (tsp/Tm) * T1_1;
           T2 = (tsp/Tm) * T2_1;
           vec_1 = vec[k][0];
           vec_2 = vec[k][1];
        }
    }
// Aplicación de vectores
if( (contador>=1) && (contador<(T0/4)) )</pre>
    Sw[0]=state[6][0];
    Sw[1]=state[6][1];
    Sw[2]=state[6][2];
    Sw[3]=state[6][3];
    Sw[4]=state[6][4];
    Sw[5]=state[6][5];
```

}

{

}

```
if( (contador>=(T0/4)) && (contador<((T0/4)+(T1/2))) )
{
    Sw[0] = state[vec_1][0];
    Sw[1] = state[vec_1][1];
    Sw[2] = state[vec_1][2];
    Sw[3] = state[vec_1][3];
    Sw[4] = state[vec_1][4];
    Sw[5] = state[vec_1][5];
}
if( (contador>=((T0/4)+(T1/2))) && (contador<((T0/4)+(T1/2)+(T2/2))) )
{
    Sw[0] = state[vec_2][0];
    Sw[1] = state[vec_2][1];
    Sw[2] = state[vec_2][2];
    Sw[3] = state[vec_2][3];
    Sw[4] = state[vec_2][4];
    Sw[5] = state[vec_2][5];
}
if (\text{contador} > = ((T0/4) + (T1/2) + (T2/2))) \&\& (\text{contador} < ((3*T0/4) + (T1/2) + (T2/2))))
{
    Sw[0] = state[7][0];
    Sw[1]=state[7][1];
    Sw[2]=state[7][2];
    Sw[3] = state[7][3];
    Sw[4] = state[7][4];
    Sw[5] = state[7][5];
}
if( (contador>=((3*T0/4)+(T1/2)+(T2/2))) && (contador<((3*T0/4)+(T1/2)+T2)) )
{
    Sw[0] = state[vec_2][0];
    Sw[1] = state[vec_2][1];
    Sw[2] = state[vec_2][2];
```

```
Sw[3] = state[vec_2][3];
    Sw[4] = state[vec_2][4];
    Sw[5] = state[vec_2][5];
}
if( (contador>=((3*T0/4)+(T1/2)+T2)) && (contador<((3*T0/4)+T1+T2)) )
{
    Sw[0] = state[vec_1][0];
    Sw[1] = state[vec_1][1];
    Sw[2] = state[vec_1][2];
    Sw[3] = state[vec_1][3];
    Sw[4] = state[vec_1][4];
    Sw[5] = state[vec_1][5];
}
if( (contador>=((3*T0/4)+T1+T2)) && (contador<=(tsp/Tm)) )
{
    Sw[0]=state[8][0];
    Sw[1]=state[8][1];
    Sw[2]=state[8][2];
    Sw[3] = state[8][3];
    Sw[4] = state[8][4];
    Sw[5]=state[8][5];
}
contador = contador + 1;
if(contador>(tsp/Tm))
{
    contador = 1;
}
```

7.2. Control Predictivo a Frecuencia Fija para la Topología de Tres Celdas

7.2.1. Parámetros del sistema, archivo .m

```
% Simulación Matrix Monofásico
close all
clear all
clc
% Voltage de Fuente RMS
Vs = 540;
% Frecuencia de Fuente (Hz)
fs = 50;
Lf = 400e-6;
               %[H]
Rf = 0.5;
               %0.01; %[Ohm]
Cf = 25e-6;
               %(7/sqrt(3))*10^-6;%25e-6; %F
Rd = 56;
R = 10;
               % Valor resistencia
L = 10e-3;
               % Valor Inductancia
Ts = 50e-6;
               % Tiempo de Muestreo
Tm = 1e-6;
Iref = 20;
               % Amplitud de Salida de Referencia
fo = 50;
               % Frecuencia de Salida
escalon = 5; % Escalon a aplicar Estado Transiente
simular = 0.183333333333333; % Tiempo de Simulación
```

7.2.2. Parámetros del MC, archivo .h

```
// Estados válidos de cada MC
int state[9][6]={{0,0,1,0,1,0},{0,0,1,1,0,0},{0,1,0,1,0,0},
{0,1,0,0,0,1},{1,0,0,0,0,1},{1,0,0,0,1,0},{0,0,1,0,0,1},
{0,1,0,0,1,0},{1,0,0,1,0,0};
```

```
// Variables para el control
double min1,iok1,iok1,vout1,g1,tsp,L,R,io1,vA1,vB1,vC1,iref;
double minA,iokA,iok1A,voutA,gA,ioA,vAA,vBA,vCA,irefA;
double minB,iokB,iok1B,voutB,gB,ioB,vAB,vBB,vCB,irefB;
double minC,iokC,iok1C,voutC,gC,ioC,vAC,vBC,vCC,irefC;
double vsAB,vsBC,vsCA,vsA,vsB,vsC,isA,isB,isC;
double iA, iB, iC, valfa, vbeta, fA, Tm;
int k,kopt,l,lopt,m,mopt;
double contadorA=1;
double contadorB=1;
double contadorC=1;
double g0,g1,g2;
double gOA,g1A,g2A;
double gOB,g1B,g2B;
double gOC,g1C,g2C;
// Vectores a evaluar
int vec[6][2]={{0,1},{1,2},{2,3},{3,4},{4,5},{5,0}};
// Tiempos de aplicacion y vectores a aplicar
double T1_1, T2_1, T0_1;
double T1, T2, T0;
int vec_1, vec_2,vec_3,vec_4;
double T1_1B, T2_1B, T0_1B;
```

```
double T1B, T2B, T0B;
```

```
int vec_1B, vec_2B;
```

```
double T1_1A, T2_1A, T0_1A;
double T1A, T2A, T0A;
int vec_1A, vec_2A;
double T1_1C, T2_1C, T0_1C;
double T1C, T2C, T0C;
int vec_1C, vec_2C;
```

7.2.3. Modelo del convertidor para Fase A en Simulink, bloque S-Function Builder

```
if(contadorA == 1)
{
    irefA = inA[0];
   R = inA[1];
   L = inA[2];
    tsp = inA[3];
    vAA = inA[4];
    vBA = inA[5];
    vCA = inA[6];
    ioA = inA[7];
    Tm = inA[8];
    minA=100000000;
    gOA = (irefA-(1-R*tsp/L)*ioA)*(irefA-(1-R*tsp/L)*ioA);
    for(k=0;k<6;k++)</pre>
    {
        voutA = (state[vec[k][0]][0]-state[vec[k][0]][3])*vAA+
        (state[vec[k][0]][1]-state[vec[k][0]][4])*vBA+
        (state[vec[k][0]][2]-state[vec[k][0]][5])*vCA;
        iok1A = tsp*voutA/L+(1-R*tsp/L)*ioA;
```

```
g1A = (irefA-iok1A)*(irefA-iok1A);
```

```
voutA = (state[vec[k][1]][0]-state[vec[k][1]][3])*vAA+
(state[vec[k][1]][1]-state[vec[k][1]][4])*vBA+
(state[vec[k][1]][2]-state[vec[k][1]][5])*vCA;
iok1A = tsp*voutA/L+(1-R*tsp/L)*ioA;
g2A = (irefA-iok1A)*(irefA-iok1A);
```

```
T1_1A = ((gOA*g2A)/(g1A*g2A + gOA*g2A + gOA*g1A));
T2_1A = ((gOA*g1A)/(g1A*g2A + gOA*g2A + gOA*g1A));
T0_1A = 1 - T1_1A - T2_1A;
```

```
gA = T1_{1A*g1A} + T2_{1A*g2A};
```

```
if(gA<minA)</pre>
        {
           minA = gA;
           TOA = (tsp/Tm) * TO_1A;
           T1A = (tsp/Tm)*T1_1A;
           T2A = (tsp/Tm) * T2_1A;
           vec_1A = vec[k][0];
           vec_2A = vec[k][1];
        }
    }
}
if( (contadorA>=1) && (contadorA<(TOA/4)) )
{
    SwA[0]=state[6][0];
    SwA[1]=state[6][1];
    SwA[2]=state[6][2];
```

```
SwA[3]=state[6][3];
    SwA[4]=state[6][4];
    SwA[5]=state[6][5];
}
if((contadorA>=(TOA/4)) && (contadorA<((TOA/4)+(T1A/2))))
{
    SwA[0] = state[vec_1A][0];
    SwA[1] = state[vec_1A][1];
    SwA[2] = state[vec_1A][2];
    SwA[3] = state[vec_1A][3];
    SwA[4] = state[vec_1A][4];
    SwA[5] = state[vec_1A][5];
}
if((contadorA>=((T0A/4)+(T1A/2)))&&(contadorA<((T0A/4)+(T1A/2)+(T2A/2))))
{
    SwA[0] = state[vec_2A][0];
    SwA[1] = state[vec_2A][1];
    SwA[2] = state[vec_2A][2];
    SwA[3] = state[vec_2A][3];
    SwA[4] = state[vec_2A][4];
    SwA[5] = state[vec_2A][5];
}
if((contadorA >= ((TOA/4) + (T1A/2) + (T2A/2)))\&\&(contadorA < ((3 * TOA/4) + (T1A/2) + (T2A/2))))
{
    SwA[0]=state[7][0];
    SwA[1]=state[7][1];
    SwA[2]=state[7][2];
    SwA[3] = state[7][3];
    SwA[4]=state[7][4];
    SwA[5]=state[7][5];
}
if((contadorA>=((3*T0A/4)+(T1A/2)+(T2A/2)))&&(contadorA<((3*T0A/4)+(T1A/2)+T2A)))
```

{

```
SwA[0] = state[vec_2A][0];
    SwA[1] = state[vec_2A][1];
    SwA[2] = state[vec_2A][2];
    SwA[3] = state[vec_2A][3];
    SwA[4] = state[vec_2A][4];
    SwA[5] = state[vec_2A][5];
}
if((contadorA>=((3*T0A/4)+(T1A/2)+T2A))&&(contadorA<((3*T0A/4)+T1A+T2A)))
{
    SwA[0] = state[vec_1A][0];
    SwA[1] = state[vec_1A][1];
    SwA[2] = state[vec_1A][2];
    SwA[3] = state[vec_1A][3];
    SwA[4] = state[vec_1A][4];
    SwA[5] = state[vec_1A][5];
}
if((contadorA>=((3*T0A/4)+T1A+T2A))&&(contadorA<=(tsp/Tm)))
{
    SwA[0]=state[8][0];
    SwA[1]=state[8][1];
    SwA[2]=state[8][2];
    SwA[3]=state[8][3];
    SwA[4]=state[8][4];
    SwA[5]=state[8][5];
}
contadorA = contadorA + 1;
if(contadorA>(tsp/Tm))
{
    contadorA = 1;
```

}

{

7.2.4.Modelo del convertidor para Fase B en Simulink, bloque S-Function Builder

```
if(contadorB == 1)
    irefB = inB[0];
    R = inB[1];
    L = inB[2];
    tsp = inB[3];
    vAB = inB[4];
    vBB = inB[5];
    vCB = inB[6];
    ioB = inB[7];
    Tm = inB[8];
    minB=100000000;
    gOB = (irefB-(1-R*tsp/L)*ioB)*(irefB-(1-R*tsp/L)*ioB);
    for(1=0;1<6;1++)</pre>
    {
        voutB = (state[vec[1][0]][0]-state[vec[1][0]][3])*vAB+
        (state[vec[1][0]][1]-state[vec[1][0]][4])*vBB+
        (state[vec[1][0]][2]-state[vec[1][0]][5])*vCB;
        iok1B = tsp*voutB/L+(1-R*tsp/L)*ioB;
        g1B = (irefB-iok1B)*(irefB-iok1B);
        voutB = (state[vec[1][1]][0]-state[vec[1][1]][3])*vAB+
        (state[vec[1][1]][1]-state[vec[1][1]][4])*vBB+
        (state[vec[1][1]][2]-state[vec[1][1]][5])*vCB;
        iok1B = tsp*voutB/L+(1-R*tsp/L)*ioB;
```

```
g2B = (irefB-iok1B)*(irefB-iok1B);
        T1_{1B} = ((g0B*g2B)/(g1B*g2B + g0B*g2B + g0B*g1B));
        T2_{1B} = ((g0B*g1B)/(g1B*g2B + g0B*g2B + g0B*g1B));
        TO_{1B} = 1 - T1_{1B} - T2_{1B};
        gB = T1_{1B*g1B} + T2_{1B*g2B};
        if(gB<minB)</pre>
        {
           minB = gB;
           TOB = (tsp/Tm) * TO_1B;
           T1B = (tsp/Tm)*T1_1B;
           T2B = (tsp/Tm) * T2_1B;
           vec_{1B} = vec[1][0];
           vec_{2B} = vec[1][1];
        }
    }
if((contadorB>=1)&&(contadorB<(TOB/4)))
    SwB[0]=state[6][0];
    SwB[1]=state[6][1];
    SwB[2]=state[6][2];
    SwB[3]=state[6][3];
    SwB[4]=state[6][4];
    SwB[5]=state[6][5];
if((contadorB>=(T0B/4))&&(contadorB<((T0B/4)+(T1B/2))))
```

}

{

}

{

```
SwB[0] = state[vec_1B][0];
    SwB[1] = state[vec_1B][1];
    SwB[2] = state[vec_1B][2];
    SwB[3] = state[vec_1B][3];
    SwB[4] = state[vec_1B][4];
    SwB[5] = state[vec_1B][5];
}
if((contadorB>=((T0B/4)+(T1B/2)))&&(contadorB<((T0B/4)+(T1B/2)+(T2B/2))))
{
    SwB[0] = state[vec_2B][0];
    SwB[1] = state[vec_2B][1];
    SwB[2] = state[vec_2B][2];
    SwB[3] = state[vec_2B][3];
    SwB[4] = state[vec_2B][4];
    SwB[5] = state[vec_2B][5];
}
if((contadorB>=((T0B/4)+(T1B/2)+(T2B/2)))&&(contadorB<((3*T0B/4)+(T1B/2)+(T2B/2))))
{
    SwB[0] = state[7][0];
    SwB[1]=state[7][1];
    SwB[2]=state[7][2];
    SwB[3]=state[7][3];
    SwB[4] = state[7][4];
    SwB[5]=state[7][5];
}
if((contadorB>=((3*T0B/4)+(T1B/2)+(T2B/2)))&&(contadorB<((3*T0B/4)+(T1B/2)+T2B)))
{
    SwB[0] = state[vec_2B][0];
    SwB[1] = state[vec_2B][1];
    SwB[2] = state[vec_2B][2];
    SwB[3] = state[vec_2B][3];
    SwB[4] = state[vec_2B][4];
```

```
SwB[5] = state[vec_2B][5];
}
if((contadorB>=((3*T0B/4)+(T1B/2)+T2B))&&(contadorB<((3*T0B/4)+T1B+T2B)))
{
    SwB[0] = state[vec_1B][0];
    SwB[1] = state[vec_1B][1];
    SwB[2] = state[vec_1B][2];
    SwB[3] = state[vec_1B][3];
    SwB[4] = state[vec_1B][4];
    SwB[5] = state[vec_1B][5];
}
if((contadorB>=((3*T0B/4)+T1B+T2B))&&(contadorB<=(tsp/Tm)))
{
    SwB[0]=state[8][0];
    SwB[1]=state[8][1];
    SwB[2]=state[8][2];
    SwB[3]=state[8][3];
    SwB[4]=state[8][4];
    SwB[5]=state[8][5];
}
contadorB = contadorB + 1;
if(contadorB>(tsp/Tm))
{
    contadorB = 1;
}
```

```
7.2.5. Modelo del convertidor para Fase A en Simulink, bloque S-Function
Builder
```

```
if(contadorC == 1)
{
```

```
irefC = inC[0];
R = inC[1];
L = inC[2];
tsp = inC[3];
vAC = inC[4];
vBC = inC[5];
vCC = inC[6];
ioC = inC[7];
Tm = inC[8];
minC=1000000000;
gOC = (irefC-(1-R*tsp/L)*ioC)*(irefC-(1-R*tsp/L)*ioC);
for(m=0;m<6;m++)</pre>
{
    voutC = (state[vec[m][0]][0]-state[vec[m][0]][3])*vAC+
    (state[vec[m][0]][1]-state[vec[m][0]][4])*vBC+
    (state[vec[m][0]][2]-state[vec[m][0]][5])*vCC;
    iok1C = tsp*voutC/L+(1-R*tsp/L)*ioC;
    g1C = (irefC-iok1C)*(irefC-iok1C);
    voutC = (state[vec[m][1]][0]-state[vec[m][1]][3])*vAC+
    (state[vec[m][1]][1]-state[vec[m][1]][4])*vBC+
    (state[vec[m][1]][2]-state[vec[m][1]][5])*vCC;
    iok1C = tsp*voutC/L+(1-R*tsp/L)*ioC;
    g2C = (irefC-iok1C)*(irefC-iok1C);
    T1_1C = ((g0C*g2C)/(g1C*g2C + g0C*g2C + g0C*g1C));
    T2_1C = ((g0C*g1C)/(g1C*g2C + g0C*g2C + g0C*g1C));
    TO_1C = 1 - T1_1C - T2_1C;
```
```
gC = T1_1C*g1C + T2_1C*g2C;
        if(gC<minC)</pre>
        {
           minC = gC;
           TOC = (tsp/Tm)*TO_1C;
           T1C = (tsp/Tm)*T1_1C;
           T2C = (tsp/Tm)*T2_1C;
           vec_1C = vec[m][0];
           vec_2C = vec[m][1];
        }
    }
}
if((contadorC>=1)&&(contadorC<(TOC/4)))
{
    SwC[0]=state[6][0];
    SwC[1]=state[6][1];
    SwC[2]=state[6][2];
    SwC[3]=state[6][3];
    SwC[4]=state[6][4];
    SwC[5]=state[6][5];
}
if((contadorC>=(TOC/4))&&(contadorC<((TOC/4)+(T1C/2))))
{
    SwC[0] = state[vec_1C][0];
    SwC[1] = state[vec_1C][1];
    SwC[2] = state[vec_1C][2];
    SwC[3] = state[vec_1C][3];
    SwC[4] = state[vec_1C][4];
    SwC[5] = state[vec_1C][5];
```

```
}
if((contadorC>=((T0C/4)+(T1C/2)))&&(contadorC<((T0C/4)+(T1C/2)+(T2C/2))))
{
    SwC[0] = state[vec_2C][0];
    SwC[1] = state[vec_2C][1];
    SwC[2] = state[vec_2C][2];
    SwC[3] = state[vec_2C][3];
    SwC[4] = state[vec_2C][4];
    SwC[5] = state[vec_2C][5];
}
if((contadorC>=((T0C/4)+(T1C/2)+(T2C/2)))&&(contadorC<((3*T0C/4)+(T1C/2)+(T2C/2))))
{
    SwC[0]=state[7][0];
    SwC[1]=state[7][1];
    SwC[2] = state[7][2];
    SwC[3]=state[7][3];
    SwC[4]=state[7][4];
    SwC[5] = state[7][5];
}
if((contadorC>=((3*T0C/4)+(T1C/2)+(T2C/2)))&&(contadorC<((3*T0C/4)+(T1C/2)+T2C)))
{
    SwC[0] = state[vec_2C][0];
    SwC[1] = state[vec_2C][1];
    SwC[2] = state[vec_2C][2];
    SwC[3] = state[vec_2C][3];
    SwC[4] = state[vec_2C][4];
    SwC[5] = state[vec_2C][5];
}
if((contadorC>=((3*T0C/4)+(T1C/2)+T2C))&&(contadorC<((3*T0C/4)+T1C+T2C)))
{
    SwC[0] = state[vec_1C][0];
    SwC[1] = state[vec_1C][1];
```

```
SwC[2] = state[vec_1C][2];
    SwC[3] = state[vec_1C][3];
    SwC[4] = state[vec_1C][4];
    SwC[5] = state[vec_1C][5];
}
if((contadorC>=((3*T0C/4)+T1C+T2C))&&(contadorC<=(tsp/Tm)))
{
    SwC[0]=state[8][0];
    SwC[1]=state[8][1];
    SwC[2]=state[8][2];
    SwC[3]=state[8][3];
    SwC[4]=state[8][4];
    SwC[5]=state[8][5];
}
contadorC = contadorC + 1;
if(contadorC>(tsp/Tm))
{
    contadorC = 1;
}
```

```
7.3. Control Predictivo a Frecuencia Fija para la Topología de
Nueve Celdas
```

```
7.3.1. Parámetros del sistema, archivo .m
```

```
\begin{verbatim}
```

```
% Simulación Matrix Monofásico
close all
clear all
clc
```

```
% Voltage de Fuente RMS
Vs = 540;
% Frecuencia de Fuente (Hz)
fs = 50;
Lf = 400e-6;
                %[H]
Rf = 0.5;
                %0.01; %[Ohm]
Cf = 25e-6;
                %(7/sqrt(3))*10^-6;%25e-6; %F
Rd = 56;
R = 10;
                % Valor resistencia
L = 10e-3;
                % Valor Inductancia
Ts = 50e-6;
                % Tiempo de Muestreo
Tm = 1e-6;
Iref = 50;
                % Amplitud de Salida de Referencia
fo = 50;
                % Frecuencia de Salida
                % Escalon a aplicar Estado Transiente
escalon = 5;
```

simular = 0.183333333333333; % Tiempo de Simulación

7.3.2. Parámetros del MC, archivo .h

int state[9][6]={{0,0,1,0,1,0},{0,0,1,1,0,0},{0,1,0,1,0,0}, {0,1,0,0,0,1},{1,0,0,0,0,1},{1,0,0,0,1,0},{0,0,1,0,0,1}, {0,1,0,0,1,0},{1,0,0,1,0,0}; double min1,iok1,iok1,vout1,g1,tsp,L,R,io1,vA1,vB1,vC1,iref; double minA,iokA,iok1A,voutA1,voutA2,voutA3,gA,ioA,vAA1,vBA1; double vCA1,vAA2,vBA2,vCA2,vAA3,vBA3,vCA3,irefA; double minB,iokB,iok1B,voutB1,voutB2,voutB3,gB,ioB,vAB1,vBB1;

double vCB1,vAB2,vBB2,vCB2,vAB3,vBB3,vCB3,irefB; double minC,iokC,iok1C,voutC1,voutC2,voutC3,gC,ioC,vAC1,vBC1; double vCC1,vAC2,vBC2,vCC2,vAC3,vBC3,vCC3,irefC; double vsAB,vsBC,vsCA,vsA,vsB,vsC,isA,isB,isC; double iA, iB, iC, valfa, vbeta, fA, Tm; int k1,k2,k3,kopt,l1,l2,l3,lopt,m1,m2,m3,mopt; double contadorA=1; double contadorB=1; double contadorC=1; double g0,g1,g2; double gOA,g1A,g2A; double gOB,g1B,g2B; double gOC,g1C,g2C; int vec[6][2]={{0,1},{1,2},{2,3},{3,4},{4,5},{5,0}}; double T1_1, T2_1, T0_1; double T1, T2, T0; int vec_1, vec_2,vec_3,vec_4; double T1_1B, T2_1B, T0_1B; double T1B, T2B, T0B; int vec_1B1, vec_2B1; int vec_1B2, vec_2B2; int vec_1B3, vec_2B3; double T1_1A, T2_1A, T0_1A; double T1A, T2A, T0A; int vec_1A1, vec_2A1; int vec_1A2, vec_2A2; int vec_1A3, vec_2A3; double T1_1C, T2_1C, T0_1C;

```
double T1C, T2C, T0C;
int vec_1C1, vec_2C1;
int vec_1C2, vec_2C2;
int vec_1C3, vec_2C3;
```

7.3.3. Modelo del convertidor para Fase A en Simulink, bloque S-Function Builder

```
// Comienzo del ciclo
if(contadorA == 1)
{
    irefA = inA[0];
                       // Medición de corriente
   R = inA[1];
                       // Valor de la Resistencia
   L = inA[2];
                       // Valor de la Inductancia
   tsp = inA[3];
                       // Paso
    vAA1 = inA[4];
                       // Medición de voltaje entre líneas AB fuente A1
    vBA1 = inA[5];
                        // Medición de voltaje entre líneas BC fuente A1
    vCA1 = inA[6];
                        // Medición de voltaje entre líneas CA fuente A1
    ioA = inA[7];
                       // Medición de Corriente en la carga
    Tm = inA[8];
                       // Tiempo de muestreo
    vAA2 = inA[9];
                       // Medición de voltaje entre líneas AB fuente A2
    vBA2 = inA[10];
                        // Medición de voltaje entre líneas BC fuente A2
    vCA2 = inA[11];
                        // Medición de voltaje entre líneas CA fuente A2
    vAA3 = inA[12];
                       // Medición de voltaje entre líneas AB fuente A3
    vBA3 = inA[13];
                        // Medición de voltaje entre líneas BC fuente A3
    vCA3 = inA[14];
                        // Medición de voltaje entre líneas CA fuente A3
   minA=1000000000;
                       // Variable para minimización
    gOA = (irefA-(1-R*tsp/L)*ioA)*(irefA-(1-R*tsp/L)*ioA);
    // Comparación señal medida y señal de referencia
```

```
// Ingreso al primer ciclo
for(k1=0;k1<6;k1++)
{
   for(k2=0;k2<6;k2++)
   // Ingreso al segundo ciclo
   {
        for(k3=0;k3<6;k3++)
        // Ingreso al tercer ciclo y se ejecuta modelo de predicción
        {
            voutA1 = (state[vec[k1][0]][0]-state[vec[k1][0]][3])*vAA1+
            (state[vec[k1][0]][1]-state[vec[k1][0]][4])*vBA1+
            (state[vec[k1][0]][2]-state[vec[k1][0]][5])*vCA1;
            voutA2 = (state[vec[k2][0]][0]-state[vec[k2][0]][3])*vAA2+
            (state[vec[k2][0]][1]-state[vec[k2][0]][4])*vBA2+
            (state[vec[k2][0]][2]-state[vec[k2][0]][5])*vCA2;
            voutA3 = (state[vec[k3][0]][0]-state[vec[k3][0]][3])*vAA3+
            (state[vec[k3][0]][1]-state[vec[k3][0]][4])*vBA3+
            (state[vec[k3][0]][2]-state[vec[k3][0]][5])*vCA3;
            iok1A = tsp*(voutA1+voutA2+voutA3)/L+(1-R*tsp/L)*ioA;
            g1A = (irefA-iok1A)*(irefA-iok1A);
            voutA1 = (state[vec[k1][1]][0]-state[vec[k1][1]][3])*vAA1+
            (state[vec[k1][1]][1]-state[vec[k1][1]][4])*vBA1+
            (state[vec[k1][1]][2]-state[vec[k1][1]][5])*vCA1;
            voutA2 = (state[vec[k2][1]][0]-state[vec[k2][1]][3])*vAA2+
            (state[vec[k2][1]][1]-state[vec[k2][1]][4])*vBA2+
            (state[vec[k2][1]][2]-state[vec[k2][1]][5])*vCA2;
            voutA3 = (state[vec[k3][1]][0]-state[vec[k3][1]][3])*vAA3+
            (state[vec[k3][1]][1]-state[vec[k3][1]][4])*vBA3+
            (state[vec[k3][1]][2]-state[vec[k3][1]][5])*vCA3;
            iok1A = tsp*(voutA1+voutA2+voutA3)/L+(1-R*tsp/L)*ioA;
            g2A = (irefA-iok1A)*(irefA-iok1A);
```

```
// Cálculo de tiempos de vectores
                 T1_1A = ((g0A*g2A)/(g1A*g2A + g0A*g2A + g0A*g1A));
                 T2_1A = ((g0A*g1A)/(g1A*g2A + g0A*g2A + g0A*g1A));
                 TO_{1A} = 1 - T1_{1A} - T2_{1A};
                 // Función de costo
                 gA = T1_{1A*g1A} + T2_{1A*g2A};
                 // Minimización de la función
                 if(gA<minA)
                 {
                    minA = gA;
                    TOA = (tsp/Tm) * TO_1A;
                    T1A = (tsp/Tm)*T1_1A;
                    T2A = (tsp/Tm)*T2_1A;
                    vec_1A1 = vec[k1][0];
                    vec_2A1 = vec[k1][1];
                    vec_1A2 = vec[k2][0];
                    vec_{2A2} = vec[k2][1];
                    vec_{1A3} = vec[k3][0];
                    vec_{2A3} = vec[k3][1];
                 }
            }
        }
    }
}
// Aplicación de vectores
if((contadorA>=1)&&(contadorA<(TOA/4)) )</pre>
{
    SwA[0]=state[6][0];
    SwA[1]=state[6][1];
```

```
SwA[2]=state[6][2];
    SwA[3]=state[6][3];
    SwA[4]=state[6][4];
    SwA[5]=state[6][5];
    SwA[6]=state[6][0];
    SwA[7]=state[6][1];
    SwA[8]=state[6][2];
    SwA[9]=state[6][3];
    SwA[10]=state[6][4];
    SwA[11]=state[6][5];
    SwA[12]=state[6][0];
    SwA[13]=state[6][1];
    SwA[14]=state[6][2];
    SwA[15]=state[6][3];
    SwA[16]=state[6][4];
    SwA[17]=state[6][5];
}
if((contadorA>=(TOA/4))&&(contadorA<((TOA/4)+(T1A/2))))
{
    SwA[0] = state[vec_1A1][0];
    SwA[1] = state[vec_1A1][1];
    SwA[2] = state[vec_1A1][2];
    SwA[3] = state[vec_1A1][3];
    SwA[4] = state[vec_1A1][4];
    SwA[5] = state[vec_1A1][5];
    SwA[6] = state[vec_1A2][0];
    SwA[7] = state[vec_1A2][1];
    SwA[8] = state[vec_1A2][2];
    SwA[9] = state[vec_1A2][3];
    SwA[10] = state[vec_1A2][4];
    SwA[11] = state[vec_1A2][5];
    SwA[12] = state[vec_1A3][0];
```

```
SwA[13] = state[vec_1A3][1];
    SwA[14] = state[vec_1A3][2];
    SwA[15] = state[vec_1A3][3];
    SwA[16] = state[vec_1A3][4];
    SwA[17] = state[vec_1A3][5];
}
if((contadorA>=((T0A/4)+(T1A/2)))&&(contadorA<((T0A/4)+(T1A/2)+(T2A/2))))
{
    SwA[0] = state[vec_2A1][0];
    SwA[1] = state[vec_2A1][1];
    SwA[2] = state[vec_2A1][2];
    SwA[3] = state[vec_2A1][3];
    SwA[4] = state[vec_2A1][4];
    SwA[5] = state[vec_2A1][5];
    SwA[6] = state[vec_2A2][0];
    SwA[7] = state[vec_2A2][1];
    SwA[8] = state[vec_2A2][2];
    SwA[9] = state[vec_2A2][3];
    SwA[10] = state[vec_2A2][4];
    SwA[11] = state[vec_2A2][5];
    SwA[12] = state[vec_2A3][0];
    SwA[13] = state[vec_2A3][1];
    SwA[14] = state[vec_2A3][2];
    SwA[15] = state[vec_2A3][3];
    SwA[16] = state[vec_2A3][4];
    SwA[17] = state[vec_2A3][5];
}
if((contadorA>=((T0A/4)+(T1A/2)+(T2A/2)))&& (contadorA<((3*T0A/4)+(T1A/2)+(T2A/2))))
{
    SwA[0]=state[7][0];
    SwA[1]=state[7][1];
    SwA[2]=state[7][2];
```

```
SwA[3]=state[7][3];
    SwA[4]=state[7][4];
    SwA[5]=state[7][5];
    SwA[6]=state[7][0];
    SwA[7]=state[7][1];
    SwA[8]=state[7][2];
    SwA[9]=state[7][3];
    SwA[10]=state[7][4];
    SwA[11]=state[7][5];
    SwA[12]=state[7][0];
    SwA[13]=state[7][1];
    SwA[14]=state[7][2];
    SwA[15]=state[7][3];
    SwA[16]=state[7][4];
    SwA[17]=state[7][5];
}
if((contadorA>=((3*T0A/4)+(T1A/2)+(T2A/2)))&&(contadorA<((3*T0A/4)+(T1A/2)+T2A)))
{
    SwA[0] = state[vec_2A1][0];
    SwA[1] = state[vec_2A1][1];
    SwA[2] = state[vec_2A1][2];
    SwA[3] = state[vec_2A1][3];
    SwA[4] = state[vec_2A1][4];
    SwA[5] = state[vec_2A1][5];
    SwA[6] = state[vec_2A2][0];
    SwA[7] = state[vec_2A2][1];
    SwA[8] = state[vec_2A2][2];
    SwA[9] = state[vec_2A2][3];
    SwA[10] = state[vec_2A2][4];
    SwA[11] = state[vec_2A2][5];
    SwA[12] = state[vec_2A3][0];
    SwA[13] = state[vec_2A3][1];
```

```
SwA[14] = state[vec_2A3][2];
    SwA[15] = state[vec_2A3][3];
    SwA[16] = state[vec_2A3][4];
    SwA[17] = state[vec_2A3][5];
}
if((contadorA>=((3*T0A/4)+(T1A/2)+T2A))&&(contadorA<((3*T0A/4)+T1A+T2A)))
{
    SwA[0] = state[vec_1A1][0];
    SwA[1] = state[vec_1A1][1];
    SwA[2] = state[vec_1A1][2];
    SwA[3] = state[vec_1A1][3];
    SwA[4] = state[vec_1A1][4];
    SwA[5] = state[vec_1A1][5];
    SwA[6] = state[vec_1A2][0];
    SwA[7] = state[vec_1A2][1];
    SwA[8] = state[vec_1A2][2];
    SwA[9] = state[vec_1A2][3];
    SwA[10] = state[vec_1A2][4];
    SwA[11] = state[vec_1A2][5];
    SwA[12] = state[vec_1A3][0];
    SwA[13] = state[vec_1A3][1];
    SwA[14] = state[vec_1A3][2];
    SwA[15] = state[vec_1A3][3];
    SwA[16] = state[vec_1A3][4];
    SwA[17] = state[vec_1A3][5];
}
if((contadorA>=((3*T0A/4)+T1A+T2A))&&(contadorA<=(tsp/Tm)))
{
    SwA[0]=state[8][0];
    SwA[1]=state[8][1];
    SwA[2]=state[8][2];
    SwA[3]=state[8][3];
```

```
SwA[4]=state[8][4];
    SwA[5]=state[8][5];
    SwA[6]=state[8][0];
    SwA[7]=state[8][1];
    SwA[8]=state[8][2];
    SwA[9]=state[8][3];
    SwA[10]=state[8][4];
    SwA[11]=state[8][5];
    SwA[12]=state[8][0];
    SwA[13]=state[8][1];
    SwA[14]=state[8][2];
    SwA[15]=state[8][3];
    SwA[16]=state[8][4];
    SwA[17]=state[8][5];
}
contadorA = contadorA + 1;
if(contadorA>(tsp/Tm))
{
    contadorA = 1;
}
```

7.3.4. Modelo del convertidor para Fase B en Simulink, bloque S-Function Builder

```
if(contadorB == 1)
{
    irefB = inB[0];
    R = inB[1];
    L = inB[2];
    tsp = inB[3];
    vAB1 = inB[4];
```

```
vBB1 = inB[5];
vCB1 = inB[6];
ioB = inB[7];
Tm = inB[8];
vAB2 = inB[9];
vBB2 = inB[10];
vCB2 = inB[11];
vAB3 = inB[12];
vBB3 = inB[13];
vCB3 = inB[14];
minB=100000000;
gOB = (irefB-(1-R*tsp/L)*ioB)*(irefB-(1-R*tsp/L)*ioB);
for(l1=0;l1<6;l1++)</pre>
{
    for(12=0;12<6;12++)
    {
        for(13=0;13<6;13++)
        {
            voutB1 = (state[vec[11][0]][0]-state[vec[11][0]][3])*vAB1+
            (state[vec[11][0]][1]-state[vec[11][0]][4])*vBB1+
            (state[vec[11][0]][2]-state[vec[11][0]][5])*vCB1;
            voutB2 = (state[vec[12][0]][0]-state[vec[12][0]][3])*vAB2+
            (state[vec[12][0]][1]-state[vec[12][0]][4])*vBB2+
            (state[vec[12][0]][2]-state[vec[12][0]][5])*vCB2;
            voutB3 = (state[vec[13][0]][0]-state[vec[13][0]][3])*vAB3+
            (state[vec[13][0]][1]-state[vec[13][0]][4])*vBB3+
            (state[vec[13][0]][2]-state[vec[13][0]][5])*vCB3;
            iok1B = tsp*(voutB1+voutB2+voutB3)/L+(1-R*tsp/L)*ioB;
            g1B = (irefB-iok1B)*(irefB-iok1B);
```

```
voutB1 = (state[vec[11][1]][0]-state[vec[11][1]][3])*vAB1+
(state[vec[11][1]][1]-state[vec[11][1]][4])*vBB1+
(state[vec[11][1]][2]-state[vec[11][1]][5])*vCB1;
voutB2 = (state[vec[12][1]][0]-state[vec[12][1]][3])*vAB2+
(state[vec[12][1]][1]-state[vec[12][1]][4])*vBB2+
(state[vec[12][1]][2]-state[vec[12][1]][5])*vCB2;
voutB3 = (state[vec[13][1]][0]-state[vec[13][1]][3])*vAB3+
(state[vec[13][1]][1]-state[vec[13][1]][4])*vBB3+
(state[vec[13][1]][2]-state[vec[13][1]][5])*vCB3;
iok1B = tsp*(voutB1+voutB2+voutB3)/L+(1-R*tsp/L)*ioB;
g2B = (irefB-iok1B)*(irefB-iok1B);
```

```
T1_{1B} = ((g0B*g2B)/(g1B*g2B + g0B*g2B + g0B*g1B));
T2_{1B} = ((g0B*g1B)/(g1B*g2B + g0B*g2B + g0B*g1B));
TO_{1B} = 1 - T1_{1B} - T2_{1B};
gB = T1_{1B*g1B} + T2_{1B*g2B};
if(gB<minB)</pre>
{
   minB = gB;
   TOB = (tsp/Tm) * TO_1B;
   T1B = (tsp/Tm)*T1_1B;
   T2B = (tsp/Tm) * T2_1B;
   vec_{1B1} = vec[11][0];
   vec_{2B1} = vec[11][1];
   vec_{1B2} = vec[12][0];
   vec_{2B2} = vec[12][1];
   vec_{1B3} = vec[13][0];
   vec_{2B3} = vec[13][1];
```

```
}
            }
        }
    }
}
if((contadorB>=1)&&(contadorB<(T0B/4)))
{
    SwB[0]=state[6][0];
    SwB[1]=state[6][1];
    SwB[2]=state[6][2];
    SwB[3]=state[6][3];
    SwB[4]=state[6][4];
    SwB[5]=state[6][5];
    SwB[6]=state[6][0];
    SwB[7]=state[6][1];
    SwB[8]=state[6][2];
    SwB[9]=state[6][3];
    SwB[10]=state[6][4];
    SwB[11]=state[6][5];
    SwB[12]=state[6][0];
    SwB[13]=state[6][1];
    SwB[14]=state[6][2];
    SwB[15]=state[6][3];
    SwB[16]=state[6][4];
    SwB[17]=state[6][5];
}
if((contadorB>=(T0B/4))&&(contadorB<((T0B/4)+(T1B/2))))
{
    SwB[0] = state[vec_1B1][0];
    SwB[1] = state[vec_1B1][1];
    SwB[2] = state[vec_1B1][2];
```

```
SwB[3] = state[vec_1B1][3];
    SwB[4] = state[vec_1B1][4];
    SwB[5] = state[vec_1B1][5];
    SwB[6] = state[vec_1B2][0];
    SwB[7] = state[vec_1B2][1];
    SwB[8] = state[vec_1B2][2];
    SwB[9] = state[vec_1B2][3];
    SwB[10] = state[vec_1B2][4];
    SwB[11] = state[vec_1B2][5];
    SwB[12] = state[vec_1B3][0];
    SwB[13] = state[vec_1B3][1];
    SwB[14] = state[vec_1B3][2];
    SwB[15] = state[vec_1B3][3];
    SwB[16] = state[vec_1B3][4];
    SwB[17] = state[vec_1B3][5];
}
if((contadorB>=((T0B/4)+(T1B/2)))&&(contadorB<((T0B/4)+(T1B/2)+(T2B/2))))
{
    SwB[0] = state[vec_2B1][0];
    SwB[1] = state[vec_2B1][1];
    SwB[2] = state[vec_2B1][2];
    SwB[3] = state[vec_2B1][3];
    SwB[4] = state[vec_2B1][4];
    SwB[5] = state[vec_2B1][5];
    SwB[6] = state[vec_2B2][0];
    SwB[7] = state[vec_2B2][1];
    SwB[8] = state[vec_2B2][2];
    SwB[9] = state[vec_2B2][3];
    SwB[10] = state[vec_2B2][4];
    SwB[11] = state[vec_2B2][5];
    SwB[12] = state[vec_2B3][0];
    SwB[13] = state[vec_2B3][1];
```

```
SwB[14] = state[vec_2B3][2];
    SwB[15] = state[vec_2B3][3];
    SwB[16] = state[vec_2B3][4];
    SwB[17] = state[vec_2B3][5];
}
if((contadorB>=((T0B/4)+(T1B/2)+(T2B/2)))&&(contadorB<((3*T0B/4)+(T1B/2)+(T2B/2))))
{
    SwB[0]=state[7][0];
    SwB[1]=state[7][1];
    SwB[2]=state[7][2];
    SwB[3]=state[7][3];
    SwB[4]=state[7][4];
    SwB[5]=state[7][5];
    SwB[6]=state[7][0];
    SwB[7]=state[7][1];
    SwB[8]=state[7][2];
    SwB[9]=state[7][3];
    SwB[10]=state[7][4];
    SwB[11]=state[7][5];
    SwB[12]=state[7][0];
    SwB[13]=state[7][1];
    SwB[14]=state[7][2];
    SwB[15]=state[7][3];
    SwB[16]=state[7][4];
    SwB[17]=state[7][5];
}
if((contadorB>=((3*T0B/4)+(T1B/2)+(T2B/2)))&&(contadorB<((3*T0B/4)+(T1B/2)+T2B)))
{
    SwB[0] = state[vec_2B1][0];
    SwB[1] = state[vec_2B1][1];
    SwB[2] = state[vec_2B1][2];
    SwB[3] = state[vec_2B1][3];
```

```
SwB[4] = state[vec_2B1][4];
    SwB[5] = state[vec_2B1][5];
    SwB[6] = state[vec_2B2][0];
    SwB[7] = state[vec_2B2][1];
    SwB[8] = state[vec_2B2][2];
    SwB[9] = state[vec_2B2][3];
    SwB[10] = state[vec_2B2][4];
    SwB[11] = state[vec_2B2][5];
    SwB[12] = state[vec_2B3][0];
    SwB[13] = state[vec_2B3][1];
    SwB[14] = state[vec_2B3][2];
    SwB[15] = state[vec_2B3][3];
    SwB[16] = state[vec_2B3][4];
    SwB[17] = state[vec_2B3][5];
}
if((contadorB>=((3*T0B/4)+(T1B/2)+T2B))&&(contadorB<((3*T0B/4)+T1B+T2B)))
{
    SwB[0] = state[vec_1B1][0];
    SwB[1] = state[vec_1B1][1];
    SwB[2] = state[vec_1B1][2];
    SwB[3] = state[vec_1B1][3];
    SwB[4] = state[vec_1B1][4];
    SwB[5] = state[vec_1B1][5];
    SwB[6] = state[vec_1B2][0];
    SwB[7] = state[vec_1B2][1];
    SwB[8] = state[vec_1B2][2];
    SwB[9] = state[vec_1B2][3];
    SwB[10] = state[vec_1B2][4];
    SwB[11] = state[vec_1B2][5];
    SwB[12] = state[vec_1B3][0];
    SwB[13] = state[vec_1B3][1];
    SwB[14] = state[vec_1B3][2];
```

```
SwB[15] = state[vec_1B3][3];
    SwB[16] = state[vec_1B3][4];
    SwB[17] = state[vec_1B3][5];
}
if((contadorB>=((3*T0B/4)+T1B+T2B))&&(contadorB<=(tsp/Tm)))
{
    SwB[0]=state[8][0];
    SwB[1]=state[8][1];
    SwB[2]=state[8][2];
    SwB[3]=state[8][3];
    SwB[4]=state[8][4];
    SwB[5]=state[8][5];
    SwB[6]=state[8][0];
    SwB[7]=state[8][1];
    SwB[8]=state[8][2];
    SwB[9]=state[8][3];
    SwB[10]=state[8][4];
    SwB[11]=state[8][5];
    SwB[12]=state[8][0];
    SwB[13]=state[8][1];
    SwB[14]=state[8][2];
    SwB[15]=state[8][3];
    SwB[16]=state[8][4];
    SwB[17]=state[8][5];
}
contadorB = contadorB + 1;
if(contadorB>(tsp/Tm))
{
    contadorB = 1;
}
```

7.3.5.Modelo del convertidor para Fase C en Simulink, bloque S-Function Builder

{

```
if(contadorC == 1)
    irefC = inC[0];
    R = inC[1];
    L = inC[2];
    tsp = inC[3];
    vAC1 = inC[4];
    vBC1 = inC[5];
    vCC1 = inC[6];
    ioC = inC[7];
    Tm = inC[8];
    vAC2 = inC[9];
    vBC2 = inC[10];
    vCC2 = inC[11];
    vAC3 = inC[12];
    vBC3 = inC[13];
    vCC3 = inC[14];
    minC=100000000;
    gOC = (irefC-(1-R*tsp/L)*ioC)*(irefC-(1-R*tsp/L)*ioC);
    for(m1=0;m1<6;m1++)
    {
        for(m2=0;m2<6;m2++)
        {
            for(m3=0;m3<6;m3++)
            {
                voutC1 = (state[vec[m1][0]][0]-state[vec[m1][0]][3])*vAC1+
                (state[vec[m1][0]][1]-state[vec[m1][0]][4])*vBC1+
```

```
(state[vec[m1][0]][2]-state[vec[m1][0]][5])*vCC1;
voutC2 = (state[vec[m2][0]][0]-state[vec[m2][0]][3])*vAC2+
(state[vec[m2][0]][1]-state[vec[m2][0]][4])*vBC2+
(state[vec[m2][0]][2]-state[vec[m2][0]][5])*vCC2;
voutC3 = (state[vec[m3][0]][0]-state[vec[m3][0]][3])*vAC3+
(state[vec[m3][0]][1]-state[vec[m3][0]][4])*vBC3+
(state[vec[m3][0]][2]-state[vec[m3][0]][5])*vCC3;
iok1C = tsp*(voutC1+voutC2+voutC3)/L+(1-R*tsp/L)*ioC;
g1C = (irefC-iok1C)*(irefC-iok1C);
```

```
voutC1 = (state[vec[m1][1]][0]-state[vec[m1][1]][3])*vAC1+
(state[vec[m1][1]][1]-state[vec[m1][1]][4])*vBC1+
(state[vec[m1][1]][2]-state[vec[m1][1]][5])*vCC1;
voutC2 = (state[vec[m2][1]][0]-state[vec[m2][1]][3])*vAC2+
(state[vec[m2][1]][1]-state[vec[m2][1]][4])*vBC2+
(state[vec[m2][1]][2]-state[vec[m2][1]][5])*vCC2;
voutC3 = (state[vec[m3][1]][0]-state[vec[m3][1]][3])*vAC3+
(state[vec[m3][1]][1]-state[vec[m3][1]][4])*vBC3+
(state[vec[m3][1]][2]-state[vec[m3][1]][5])*vCC3;
iok1C = tsp*(voutC1+voutC2+voutC3)/L+(1-R*tsp/L)*ioC;
g2C = (irefC-iok1C)*(irefC-iok1C);
```

```
T1_1C = ((g0C*g2C)/(g1C*g2C + g0C*g2C + g0C*g1C));
T2_1C = ((g0C*g1C)/(g1C*g2C + g0C*g2C + g0C*g1C));
T0_1C = 1 - T1_1C - T2_1C;
gC = T1_1C*g1C + T2_1C*g2C;
```

```
if(gC<minC)
{
    minC = gC;</pre>
```

```
TOC = (tsp/Tm) * TO_1C;
                   T1C = (tsp/Tm)*T1_1C;
                   T2C = (tsp/Tm)*T2_1C;
                   vec_1C1 = vec[m1][0];
                   vec_2C1 = vec[m1][1];
                   vec_1C2 = vec[m2][0];
                   vec_{2C2} = vec[m2][1];
                   vec_1C3 = vec[m3][0];
                   vec_2C3 = vec[m3][1];
                }
            }
        }
    }
}
if((contadorC>=1)&&(contadorC<(TOC/4)))
{
    SwC[0]=state[6][0];
    SwC[1]=state[6][1];
    SwC[2]=state[6][2];
    SwC[3]=state[6][3];
    SwC[4]=state[6][4];
    SwC[5]=state[6][5];
    SwC[6]=state[6][0];
    SwC[7]=state[6][1];
    SwC[8]=state[6][2];
    SwC[9]=state[6][3];
    SwC[10]=state[6][4];
    SwC[11]=state[6][5];
    SwC[12]=state[6][0];
    SwC[13]=state[6][1];
    SwC[14]=state[6][2];
```

```
SwC[15]=state[6][3];
    SwC[16]=state[6][4];
    SwC[17]=state[6][5];
}
if((contadorC >= (TOC/4))\&\&(contadorC < ((TOC/4) + (T1C/2))))
{
    SwC[0] = state[vec_1C1][0];
    SwC[1] = state[vec_1C1][1];
    SwC[2] = state[vec_1C1][2];
    SwC[3] = state[vec_1C1][3];
    SwC[4] = state[vec_1C1][4];
    SwC[5] = state[vec_1C1][5];
    SwC[6] = state[vec_1C2][0];
    SwC[7] = state[vec_1C2][1];
    SwC[8] = state[vec_1C2][2];
    SwC[9] = state[vec_1C2][3];
    SwC[10] = state[vec_1C2][4];
    SwC[11] = state[vec_1C2][5];
    SwC[12] = state[vec_1C3][0];
    SwC[13] = state[vec_1C3][1];
    SwC[14] = state[vec_1C3][2];
    SwC[15] = state[vec_1C3][3];
    SwC[16] = state[vec_1C3][4];
    SwC[17] = state[vec_1C3][5];
}
if((contadorC>=((TOC/4)+(T1C/2)))&&(contadorC<((TOC/4)+(T1C/2)+(T2C/2))))
{
    SwC[0] = state[vec_2C1][0];
    SwC[1] = state[vec_2C1][1];
    SwC[2] = state[vec_2C1][2];
    SwC[3] = state[vec_2C1][3];
    SwC[4] = state[vec_2C1][4];
```

```
SwC[5] = state[vec_2C1][5];
    SwC[6] = state[vec_2C2][0];
    SwC[7] = state[vec_2C2][1];
    SwC[8] = state[vec_2C2][2];
    SwC[9] = state[vec_2C2][3];
    SwC[10] = state[vec_2C2][4];
    SwC[11] = state[vec_2C2][5];
    SwC[12] = state[vec_2C3][0];
    SwC[13] = state[vec_2C3][1];
    SwC[14] = state[vec_2C3][2];
    SwC[15] = state[vec_2C3][3];
    SwC[16] = state[vec_2C3][4];
    SwC[17] = state[vec_2C3][5];
}
if((contadorC>=((T0C/4)+(T1C/2)+(T2C/2)))&&(contadorC<((3*T0C/4)+(T1C/2)+(T2C/2))))
{
    SwC[0]=state[7][0];
    SwC[1]=state[7][1];
    SwC[2]=state[7][2];
    SwC[3] = state[7][3];
    SwC[4]=state[7][4];
    SwC[5]=state[7][5];
    SwC[6]=state[7][0];
    SwC[7]=state[7][1];
    SwC[8]=state[7][2];
    SwC[9]=state[7][3];
    SwC[10]=state[7][4];
    SwC[11]=state[7][5];
    SwC[12]=state[7][0];
    SwC[13]=state[7][1];
    SwC[14]=state[7][2];
    SwC[15]=state[7][3];
```

```
SwC[16]=state[7][4];
    SwC[17]=state[7][5];
}
if((contadorC>=((3*T0C/4)+(T1C/2)+(T2C/2)))&&(contadorC<((3*T0C/4)+(T1C/2)+T2C)))
{
    SwC[0] = state[vec_2C1][0];
    SwC[1] = state[vec_2C1][1];
    SwC[2] = state[vec_2C1][2];
    SwC[3] = state[vec_2C1][3];
    SwC[4] = state[vec_2C1][4];
    SwC[5] = state[vec_2C1][5];
    SwC[6] = state[vec_2C2][0];
    SwC[7] = state[vec_2C2][1];
    SwC[8] = state[vec_2C2][2];
    SwC[9] = state[vec_2C2][3];
    SwC[10] = state[vec_2C2][4];
    SwC[11] = state[vec_2C2][5];
    SwC[12] = state[vec_2C3][0];
    SwC[13] = state[vec_2C3][1];
    SwC[14] = state[vec_2C3][2];
    SwC[15] = state[vec_2C3][3];
    SwC[16] = state[vec_2C3][4];
    SwC[17] = state[vec_2C3][5];
}
if((contadorC>=((3*T0C/4)+(T1C/2)+T2C))&&(contadorC<((3*T0C/4)+T1C+T2C)))
{
    SwC[0] = state[vec_1C1][0];
    SwC[1] = state[vec_1C1][1];
    SwC[2] = state[vec_1C1][2];
    SwC[3] = state[vec_1C1][3];
    SwC[4] = state[vec_1C1][4];
```

```
SwC[5] = state[vec_1C1][5];
```

```
SwC[6] = state[vec_1C2][0];
    SwC[7] = state[vec_1C2][1];
    SwC[8] = state[vec_1C2][2];
    SwC[9] = state[vec_1C2][3];
    SwC[10] = state[vec_1C2][4];
    SwC[11] = state[vec_1C2][5];
    SwC[12] = state[vec_1C3][0];
    SwC[13] = state[vec_1C3][1];
    SwC[14] = state[vec_1C3][2];
    SwC[15] = state[vec_1C3][3];
    SwC[16] = state[vec_1C3][4];
    SwC[17] = state[vec_1C3][5];
}
if((contadorC>=((3*T0C/4)+T1C+T2C))&&(contadorC<=(tsp/Tm)))
{
    SwC[0]=state[8][0];
    SwC[1]=state[8][1];
    SwC[2]=state[8][2];
    SwC[3]=state[8][3];
    SwC[4] = state[8][4];
    SwC[5]=state[8][5];
    SwC[6]=state[8][0];
    SwC[7]=state[8][1];
    SwC[8]=state[8][2];
    SwC[9]=state[8][3];
    SwC[10]=state[8][4];
    SwC[11]=state[8][5];
    SwC[12]=state[8][0];
    SwC[13]=state[8][1];
    SwC[14]=state[8][2];
    SwC[15]=state[8][3];
    SwC[16]=state[8][4];
```

```
SwC[17]=state[8][5];
}
contadorC = contadorC + 1;
if(contadorC>(tsp/Tm))
{
    contadorC = 1;
}
```

				A_1						A_2						A_3				
Fase	Est. conmut.	S_1	S_2	S_3	S_4	S_5	S_6	S_1	S_2	S_3	S_4	S_5	S_6	S_1	S_2	S_3	S_4	S_5	S_6	v_{xn}
А	1 - 1 - 1	0	0	1	0	0	1	0	0	1	0	0	1	0	0	1	0	0	1	0
А	1 - 1 - 2	0	0	1	0	0	1	0	0	1	0	0	1	0	1	0	0	1	0	0
А	1 - 1 - 3	0	0	1	0	0	1	0	0	1	0	0	1	1	0	0	1	0	0	0
А	1 - 1 - 4	0	0	1	0	0	1	0	0	1	0	0	1	0	0	1	0	1	0	$v_{cA3} - v_{bA3}$
А	1 - 1 - 5	0	0	1	0	0	1	0	0	1	0	0	1	0	0	1	1	0	0	$v_{cA3} - v_{aA3}$
А	1 - 1 - 6	0	0	1	0	0	1	0	0	1	0	0	1	0	1	0	0	0	1	$v_{bA3} - v_{cA3}$
А	1 - 1 - 7	0	0	1	0	0	1	0	0	1	0	0	1	0	1	0	1	0	0	$v_{bA3} - v_{aA3}$
А	1 - 1 - 8	0	0	1	0	0	1	0	0	1	0	0	1	1	0	0	0	0	1	$v_{aA3} - v_{cA3}$
А	1 - 1 - 9	0	0	1	0	0	1	0	0	1	0	0	1	1	0	0	0	1	0	$v_{aA3} - v_{bA3}$
А	1 - 2 - 1	0	0	1	0	0	1	0	1	0	0	1	0	0	0	1	0	0	1	0
А	1 - 2 - 2	0	0	1	0	0	1	0	1	0	0	1	0	0	1	0	0	1	0	0
А	1 - 2 - 3	0	0	1	0	0	1	0	1	0	0	1	0	1	0	0	1	0	0	0
А	1 - 2 - 4	0	0	1	0	0	1	0	1	0	0	1	0	0	0	1	0	1	0	$v_{cA3} - v_{bA3}$
А	1 - 2 - 5	0	0	1	0	0	1	0	1	0	0	1	0	0	0	1	1	0	0	$v_{cA3} - v_{aA3}$
А	1 - 2 - 6	0	0	1	0	0	1	0	1	0	0	1	0	0	1	0	0	0	1	$v_{bA3} - v_{cA3}$
А	1 - 2 - 7	0	0	1	0	0	1	0	1	0	0	1	0	0	1	0	1	0	0	$v_{bA3} - v_{aA3}$
А	1 - 2 - 8	0	0	1	0	0	1	0	1	0	0	1	0	1	0	0	0	0	1	$v_{aA3} - v_{cA3}$
А	1 - 2 - 9	0	0	1	0	0	1	0	1	0	0	1	0	1	0	0	0	1	0	$v_{aA3} - v_{bA3}$
А	1 - 3 - 1	0	0	1	0	0	1	1	0	0	1	0	0	0	0	1	0	0	1	0
А	1 - 3 - 2	0	0	1	0	0	1	1	0	0	1	0	0	0	1	0	0	1	0	0
А	1 - 3 - 3	0	0	1	0	0	1	1	0	0	1	0	0	1	0	0	1	0	0	0
А	1 - 3 - 4	0	0	1	0	0	1	1	0	0	1	0	0	0	0	1	0	1	0	$v_{cA3} - v_{bA3}$
А	1 - 3 - 5	0	0	1	0	0	1	1	0	0	1	0	0	0	0	1	1	0	0	$v_{cA3} - v_{aA3}$
А	1 - 3 - 6	0	0	1	0	0	1	1	0	0	1	0	0	0	1	0	0	0	1	$v_{bA3} - v_{cA3}$
А	1 - 3 - 7	0	0	1	0	0	1	1	0	0	1	0	0	0	1	0	1	0	0	$v_{bA3} - v_{aA3}$
А	1 - 3 - 8	0	0	1	0	0	1	1	0	0	1	0	0	1	0	0	0	0	1	$v_{aA3} - v_{cA3}$
А	1 - 3 - 9	0	0	1	0	0	1	1	0	0	1	0	0	1	0	0	0	1	0	$v_{aA3} - v_{bA3}$

7.4. Tablas de estados válidos para topología de nueve celdas

Tabla 16: Estados válidos de conmutación de cada convertidor matricial 3x1

				A_1						A_2						A_3				
Fase	Est. conmut.	S_1	S_2	S_3	S_4	S_5	S_6	S_1	S_2	S_3	S_4	S_5	S_6	S_1	S_2	S_3	S_4	S_5	S_6	v_{xn}
Α	1 - 4 - 1	0	0	1	0	0	1	0	0	1	0	1	0	0	0	1	0	0	1	$v_{cA2} - v_{bA2}$
Α	1 - 4 - 2	0	0	1	0	0	1	0	0	1	0	1	0	0	1	0	0	1	0	$v_{cA2} - v_{bA2}$
Α	1 - 4 - 3	0	0	1	0	0	1	0	0	1	0	1	0	1	0	0	1	0	0	$v_{cA2} - v_{bA2}$
Α	1 - 4 - 4	0	0	1	0	0	1	0	0	1	0	1	0	0	0	1	0	1	0	$v_{cA2} - v_{bA2} + v_{cA3} - v_{bA3}$
Α	1 - 4 - 5	0	0	1	0	0	1	0	0	1	0	1	0	0	0	1	1	0	0	$v_{cA2} - v_{bA2} + v_{cA3} - v_{aA3}$
Α	1 - 4 - 6	0	0	1	0	0	1	0	0	1	0	1	0	0	1	0	0	0	1	$v_{cA2} - v_{bA2} + v_{bA3} - v_{cA3}$
Α	1 - 4 - 7	0	0	1	0	0	1	0	0	1	0	1	0	0	1	0	1	0	0	$v_{cA2} - v_{bA2} + v_{bA3} - v_{aA3}$
Α	1 - 4 - 8	0	0	1	0	0	1	0	0	1	0	1	0	1	0	0	0	0	1	$v_{cA2} - v_{bA2} + v_{aA3} - v_{cA3}$
Α	1 - 4 - 9	0	0	1	0	0	1	0	0	1	0	1	0	1	0	0	0	1	0	$v_{cA2} - v_{bA2} + v_{aA3} - v_{bA3}$
Α	1 - 5 - 1	0	0	1	0	0	1	0	0	1	1	0	0	0	0	1	0	0	1	$v_{cA2} - v_{aA2}$
Α	1 - 5 - 2	0	0	1	0	0	1	0	0	1	1	0	0	0	1	0	0	1	0	$v_{cA2} - v_{aA2}$
Α	1 - 5 - 3	0	0	1	0	0	1	0	0	1	1	0	0	1	0	0	1	0	0	$v_{cA2} - v_{aA2}$
Α	1 - 5 - 4	0	0	1	0	0	1	0	0	1	1	0	0	0	0	1	0	1	0	$v_{cA2} - v_{aA2} + v_{cA3} - v_{bA3}$
Α	1 - 5 - 5	0	0	1	0	0	1	0	0	1	1	0	0	0	0	1	1	0	0	$v_{cA2} - v_{aA2} + v_{cA3} - v_{aA3}$
Α	1 - 5 - 6	0	0	1	0	0	1	0	0	1	1	0	0	0	1	0	0	0	1	$v_{cA2} - v_{aA2} + v_{bA3} - v_{cA3}$
Α	1 - 5 - 7	0	0	1	0	0	1	0	0	1	1	0	0	0	1	0	1	0	0	$v_{cA2} - v_{aA2} + v_{bA3} - v_{aA3}$
Α	1 - 5 - 8	0	0	1	0	0	1	0	0	1	1	0	0	1	0	0	0	0	1	$v_{cA2} - v_{aA2} + v_{aA3} - v_{cA3}$
Α	1 - 5 - 9	0	0	1	0	0	1	0	0	1	1	0	0	1	0	0	0	1	0	$v_{cA2} - v_{aA2} + v_{aA3} - v_{bA3}$
Α	1 - 6 - 1	0	0	1	0	0	1	0	1	0	0	0	1	0	0	1	0	0	1	$v_{bA2} - v_{cA2}$
Α	1 - 6 - 2	0	0	1	0	0	1	0	1	0	0	0	1	0	1	0	0	1	0	$v_{bA2} - v_{cA2}$
Α	1 - 6 - 3	0	0	1	0	0	1	0	1	0	0	0	1	1	0	0	1	0	0	$v_{bA2} - v_{cA2}$
Α	1 - 6 - 4	0	0	1	0	0	1	0	1	0	0	0	1	0	0	1	0	1	0	$v_{bA2} - v_{cA2} + v_{cA3} - v_{bA3}$
Α	1 - 6 - 5	0	0	1	0	0	1	0	1	0	0	0	1	0	0	1	1	0	0	$v_{bA2} - v_{cA2} + v_{cA3} - v_{aA3}$
А	1 - 6 - 6	0	0	1	0	0	1	0	1	0	0	0	1	0	1	0	0	0	1	$v_{bA2} - v_{cA2} + v_{bA3} - v_{cA3}$
Α	1 - 6 - 7	0	0	1	0	0	1	0	1	0	0	0	1	0	1	0	1	0	0	$v_{bA2} - v_{cA2} + v_{bA3} - v_{aA3}$
А	1 - 6 - 8	0	0	1	0	0	1	0	1	0	0	0	1	1	0	0	0	0	1	$v_{bA2} - v_{cA2} + v_{aA3} - v_{cA3}$
Α	1 - 6 - 9	0	0	1	0	0	1	0	1	0	0	0	1	1	0	0	0	1	0	$v_{bA2} - v_{cA2} + v_{aA2} - v_{bA2}$

Tabla 17: Estados válidos de conmutación de cada convertidor matricial 3x1

				A_1						A_2						A_3				
Fase	Est. conmut.	S_1	S_2	S_3	S_4	S_5	S_6	S_1	S_2	S_3	S_4	S_5	S_6	S_1	S_2	S_3	S_4	S_5	S_6	v_{xn}
Α	1 - 7 - 1	0	0	1	0	0	1	0	1	0	1	0	0	0	0	1	0	0	1	$v_{bA2} - v_{aA2}$
Α	1 - 7 - 2	0	0	1	0	0	1	0	1	0	1	0	0	0	1	0	0	1	0	$v_{bA2} - v_{aA2}$
А	1 - 7 - 3	0	0	1	0	0	1	0	1	0	1	0	0	1	0	0	1	0	0	$v_{bA2} - v_{aA2}$
Α	1 - 7 - 4	0	0	1	0	0	1	0	1	0	1	0	0	0	0	1	0	1	0	$v_{bA2} - v_{aA2} + v_{cA3} - v_{bA3}$
А	1 - 7 - 5	0	0	1	0	0	1	0	1	0	1	0	0	0	0	1	1	0	0	$v_{bA2} - v_{aA2} + v_{cA3} - v_{aA3}$
А	1 - 7 - 6	0	0	1	0	0	1	0	1	0	1	0	0	0	1	0	0	0	1	$v_{bA2} - v_{aA2} + v_{bA3} - v_{cA3}$
А	1 - 7 - 7	0	0	1	0	0	1	0	1	0	1	0	0	0	1	0	1	0	0	$v_{bA2} - v_{aA2} + v_{bA3} - v_{aA3}$
А	1 - 7 - 8	0	0	1	0	0	1	0	1	0	1	0	0	1	0	0	0	0	1	$v_{bA2} - v_{aA2} + v_{aA3} - v_{cA3}$
Α	1 - 7 - 9	0	0	1	0	0	1	0	1	0	1	0	0	1	0	0	0	1	0	$v_{bA2} - v_{aA2} + v_{aA3} - v_{bA3}$
Α	1 - 8 - 1	0	0	1	0	0	1	1	0	0	0	0	1	0	0	1	0	0	1	$v_{aA2} - v_{cA2}$
Α	1 - 8 - 2	0	0	1	0	0	1	1	0	0	0	0	1	0	1	0	0	1	0	$v_{aA2} - v_{cA2}$
Α	1 - 8 - 3	0	0	1	0	0	1	1	0	0	0	0	1	1	0	0	1	0	0	$v_{aA2} - v_{cA2}$
Α	1 - 8 - 4	0	0	1	0	0	1	1	0	0	0	0	1	0	0	1	0	1	0	$v_{aA2} - v_{cA2} + v_{cA3} - v_{bA3}$
Α	1 - 8 - 5	0	0	1	0	0	1	1	0	0	0	0	1	0	0	1	1	0	0	$v_{aA2} - v_{cA2} + v_{cA3} - v_{aA3}$
Α	1 - 8 - 6	0	0	1	0	0	1	1	0	0	0	0	1	0	1	0	0	0	1	$v_{aA2} - v_{cA2} + v_{bA3} - v_{cA3}$
Α	1 - 8 - 7	0	0	1	0	0	1	1	0	0	0	0	1	0	1	0	1	0	0	$v_{aA2} - v_{cA2} + v_{bA3} - v_{aA3}$
Α	1 - 8 - 8	0	0	1	0	0	1	1	0	0	0	0	1	1	0	0	0	0	1	$v_{aA2} - v_{cA2} + v_{aA3} - v_{cA3}$
Α	1 - 8 - 9	0	0	1	0	0	1	1	0	0	0	0	1	1	0	0	0	1	0	$v_{aA2} - v_{cA2} + v_{aA3} - v_{bA3}$
А	1 - 9 - 1	0	0	1	0	0	1	1	0	0	0	1	0	0	0	1	0	0	1	$v_{aA2} - v_{bA2}$
Α	1 - 9 - 2	0	0	1	0	0	1	1	0	0	0	1	0	0	1	0	0	1	0	$v_{aA2} - v_{bA2}$
Α	1 - 9 - 3	0	0	1	0	0	1	1	0	0	0	1	0	1	0	0	1	0	0	$v_{aA2} - v_{bA2}$
Α	1 - 9 - 4	0	0	1	0	0	1	1	0	0	0	1	0	0	0	1	0	1	0	$v_{aA2} - v_{bA2} + v_{cA3} - v_{bA3}$
А	1 - 9 - 5	0	0	1	0	0	1	1	0	0	0	1	0	0	0	1	1	0	0	$v_{aA2} - v_{bA2} + v_{cA3} - v_{aA3}$
А	1 - 9 - 6	0	0	1	0	0	1	1	0	0	0	1	0	0	1	0	0	0	1	$v_{aA2} - v_{bA2} + v_{bA3} - v_{cA3}$
А	1 - 9 - 7	0	0	1	0	0	1	1	0	0	0	1	0	0	1	0	1	0	0	$v_{aA2} - v_{bA2} + v_{bA3} - v_{aA3}$
А	1 - 9 - 8	0	0	1	0	0	1	1	0	0	0	1	0	1	0	0	0	0	1	$v_{aA2} - v_{bA2} + v_{aA3} - v_{cA3}$
А	1 - 9 - 9	0	0	1	0	0	1	1	0	0	0	1	0	1	0	0	0	1	0	$v_{aA2} - v_{bA2} + v_{aA3} - v_{bA3}$

Tabla 18: Estados válidos de conmutación de cada convertidor matricial 3x1

				A_1						A_2						A_3				
Fase	Est. conmut.	S_1	S_2	S_3	S_4	S_5	S_6	S_1	S_2	S_3	S_4	S_5	S_6	S_1	S_2	S_3	S_4	S_5	S_6	v_{xn}
А	2 - 1 - 1	0	1	0	0	1	0	0	0	1	0	0	1	0	0	1	0	0	1	0
А	2 - 1 - 2	0	1	0	0	1	0	0	0	1	0	0	1	0	1	0	0	1	0	0
А	2 - 1 - 3	0	1	0	0	1	0	0	0	1	0	0	1	1	0	0	1	0	0	0
Α	2 - 1 - 4	0	1	0	0	1	0	0	0	1	0	0	1	0	0	1	0	1	0	$v_{cA3} - v_{bA3}$
Α	2 - 1 - 5	0	1	0	0	1	0	0	0	1	0	0	1	0	0	1	1	0	0	$v_{cA3} - v_{aA3}$
Α	2 - 1 - 6	0	1	0	0	1	0	0	0	1	0	0	1	0	1	0	0	0	1	$v_{bA3} - v_{cA3}$
Α	2 - 1 - 7	0	1	0	0	1	0	0	0	1	0	0	1	0	1	0	1	0	0	$v_{bA3} - v_{aA3}$
А	2 - 1 - 8	0	1	0	0	1	0	0	0	1	0	0	1	1	0	0	0	0	1	$v_{aA3} - v_{cA3}$
Α	2 - 1 - 9	0	1	0	0	1	0	0	0	1	0	0	1	1	0	0	0	1	0	$v_{aA3} - v_{bA3}$
Α	2 - 2 - 1	0	1	0	0	1	0	0	1	0	0	1	0	0	0	1	0	0	1	0
Α	2 - 2 - 2	0	1	0	0	1	0	0	1	0	0	1	0	0	1	0	0	1	0	0
Α	2 - 2 - 3	0	1	0	0	1	0	0	1	0	0	1	0	1	0	0	1	0	0	0
Α	2 - 2 - 4	0	1	0	0	1	0	0	1	0	0	1	0	0	0	1	0	1	0	$v_{cA3} - v_{bA3}$
Α	2 - 2 - 5	0	1	0	0	1	0	0	1	0	0	1	0	0	0	1	1	0	0	$v_{cA3} - v_{aA3}$
Α	2 - 2 - 6	0	1	0	0	1	0	0	1	0	0	1	0	0	1	0	0	0	1	$v_{bA3} - v_{cA3}$
Α	2 - 2 - 7	0	1	0	0	1	0	0	1	0	0	1	0	0	1	0	1	0	0	$v_{bA3} - v_{aA3}$
Α	2 - 2 - 8	0	1	0	0	1	0	0	1	0	0	1	0	1	0	0	0	0	1	$v_{aA3} - v_{cA3}$
Α	2 - 2 - 9	0	1	0	0	1	0	0	1	0	0	1	0	1	0	0	0	1	0	$v_{aA3} - v_{bA3}$
Α	2 - 3 - 1	0	1	0	0	1	0	1	0	0	1	0	0	0	0	1	0	0	1	0
Α	2 - 3 - 2	0	1	0	0	1	0	1	0	0	1	0	0	0	1	0	0	1	0	0
Α	2 - 3 - 3	0	1	0	0	1	0	1	0	0	1	0	0	1	0	0	1	0	0	0
А	2 - 3 - 4	0	1	0	0	1	0	1	0	0	1	0	0	0	0	1	0	1	0	$v_{cA3} - v_{bA3}$
Α	2 - 3 - 5	0	1	0	0	1	0	1	0	0	1	0	0	0	0	1	1	0	0	$v_{cA3} - v_{aA3}$
Α	2 - 3 - 6	0	1	0	0	1	0	1	0	0	1	0	0	0	1	0	0	0	1	$v_{bA3} - v_{cA3}$
А	2 - 3 - 7	0	1	0	0	1	0	1	0	0	1	0	0	0	1	0	1	0	0	$v_{bA3} - v_{aA3}$
А	2 - 3 - 8	0	1	0	0	1	0	1	0	0	1	0	0	1	0	0	0	0	1	$v_{aA3} - v_{cA3}$
А	2 - 3 - 9	0	1	0	0	1	0	1	0	0	1	0	0	1	0	0	0	1	0	$v_{aA3} - v_{bA3}$

Tabla 19: Estados válidos de conmutación de cada convertidor matricial $3\mathrm{x}1$

				A_1						A_2						A_3				
Fase	Est. conmut.	S_1	S_2	S_3	S_4	S_5	S_6	S_1	S_2	S_3	S_4	S_5	S_6	S_1	S_2	S_3	S_4	S_5	S_6	v_{xn}
Α	2 - 4 - 1	0	1	0	0	1	0	0	0	1	0	1	0	0	0	1	0	0	1	$v_{cA2} - v_{bA2}$
Α	2 - 4 - 2	0	1	0	0	1	0	0	0	1	0	1	0	0	1	0	0	1	0	$v_{cA2} - v_{bA2}$
А	2 - 4 - 3	0	1	0	0	1	0	0	0	1	0	1	0	1	0	0	1	0	0	$v_{cA2} - v_{bA2}$
Α	2 - 4 - 4	0	1	0	0	1	0	0	0	1	0	1	0	0	0	1	0	1	0	$v_{cA2} - v_{bA2} + v_{cA3} - v_{bA3}$
А	2 - 4 - 5	0	1	0	0	1	0	0	0	1	0	1	0	0	0	1	1	0	0	$v_{cA2} - v_{bA2} + v_{cA3} - v_{aA3}$
А	2 - 4 - 6	0	1	0	0	1	0	0	0	1	0	1	0	0	1	0	0	0	1	$v_{cA2} - v_{bA2} + v_{bA3} - v_{cA3}$
А	2 - 4 - 7	0	1	0	0	1	0	0	0	1	0	1	0	0	1	0	1	0	0	$v_{cA2} - v_{bA2} + v_{bA3} - v_{aA3}$
А	2 - 4 - 8	0	1	0	0	1	0	0	0	1	0	1	0	1	0	0	0	0	1	$v_{cA2} - v_{bA2} + v_{aA3} - v_{cA3}$
Α	2 - 4 - 9	0	1	0	0	1	0	0	0	1	0	1	0	1	0	0	0	1	0	$v_{cA2} - v_{bA2} + v_{aA3} - v_{bA3}$
Α	2 - 5 - 1	0	1	0	0	1	0	0	0	1	1	0	0	0	0	1	0	0	1	$v_{cA2} - v_{aA2}$
Α	2 - 5 - 2	0	1	0	0	1	0	0	0	1	1	0	0	0	1	0	0	1	0	$v_{cA2} - v_{aA2}$
Α	2 - 5 - 3	0	1	0	0	1	0	0	0	1	1	0	0	1	0	0	1	0	0	$v_{cA2} - v_{aA2}$
Α	2 - 5 - 4	0	1	0	0	1	0	0	0	1	1	0	0	0	0	1	0	1	0	$v_{cA2} - v_{aA2} + v_{cA3} - v_{bA3}$
Α	2 - 5 - 5	0	1	0	0	1	0	0	0	1	1	0	0	0	0	1	1	0	0	$v_{cA2} - v_{aA2} + v_{cA3} - v_{aA3}$
Α	2 - 5 - 6	0	1	0	0	1	0	0	0	1	1	0	0	0	1	0	0	0	1	$v_{cA2} - v_{aA2} + v_{bA3} - v_{cA3}$
Α	2 - 5 - 7	0	1	0	0	1	0	0	0	1	1	0	0	0	1	0	1	0	0	$v_{cA2} - v_{aA2} + v_{bA3} - v_{aA3}$
Α	2 - 5 - 8	0	1	0	0	1	0	0	0	1	1	0	0	1	0	0	0	0	1	$v_{cA2} - v_{aA2} + v_{aA3} - v_{cA3}$
Α	2 - 5 - 9	0	1	0	0	1	0	0	0	1	1	0	0	1	0	0	0	1	0	$v_{cA2} - v_{aA2} + v_{aA3} - v_{bA3}$
А	2 - 6 - 1	0	1	0	0	1	0	0	1	0	0	0	1	0	0	1	0	0	1	$v_{bA2} - v_{cA2}$
Α	2 - 6 - 2	0	1	0	0	1	0	0	1	0	0	0	1	0	1	0	0	1	0	$v_{bA2} - v_{cA2}$
Α	2 - 6 - 3	0	1	0	0	1	0	0	1	0	0	0	1	1	0	0	1	0	0	$v_{bA2} - v_{cA2}$
Α	2 - 6 - 4	0	1	0	0	1	0	0	1	0	0	0	1	0	0	1	0	1	0	$v_{bA2} - v_{cA2} + v_{cA3} - v_{bA3}$
А	2 - 6 - 5	0	1	0	0	1	0	0	1	0	0	0	1	0	0	1	1	0	0	$v_{bA2} - v_{cA2} + v_{cA3} - v_{aA3}$
А	2 - 6 - 6	0	1	0	0	1	0	0	1	0	0	0	1	0	1	0	0	0	1	$v_{bA2} - v_{cA2} + v_{bA3} - v_{cA3}$
А	2 - 6 - 7	0	1	0	0	1	0	0	1	0	0	0	1	0	1	0	1	0	0	$v_{bA2} - v_{cA2} + v_{bA3} - v_{aA3}$
А	2 - 6 - 8	0	1	0	0	1	0	0	1	0	0	0	1	1	0	0	0	0	1	$v_{bA2} - v_{cA2} + v_{aA3} - v_{cA3}$
А	2 - 6 - 9	0	1	0	0	1	0	0	1	0	0	0	1	1	0	0	0	1	0	$v_{bA2} - v_{cA2} + v_{aA2} - v_{bA2}$

Tabla 20: Estados válidos de conmutación de cada convertidor matricial 3x1

				A_1						A_2						A_3				
Fase	Est. conmut.	S_1	S_2	S_3	S_4	S_5	S_6	S_1	S_2	S_3	S_4	S_5	S_6	S_1	S_2	S_3	S_4	S_5	S_6	v_{xn}
Α	2 - 7 - 1	0	1	0	0	1	0	0	1	0	1	0	0	0	0	1	0	0	1	$v_{bA2} - v_{aA2}$
А	2 - 7 - 2	0	1	0	0	1	0	0	1	0	1	0	0	0	1	0	0	1	0	$v_{bA2} - v_{aA2}$
Α	2 - 7 - 3	0	1	0	0	1	0	0	1	0	1	0	0	1	0	0	1	0	0	$v_{bA2} - v_{aA2}$
Α	2 - 7 - 4	0	1	0	0	1	0	0	1	0	1	0	0	0	0	1	0	1	0	$v_{bA2} - v_{aA2} + v_{cA3} - v_{bA3}$
Α	2 - 7 - 5	0	1	0	0	1	0	0	1	0	1	0	0	0	0	1	1	0	0	$v_{bA2} - v_{aA2} + v_{cA3} - v_{aA3}$
А	2 - 7 - 6	0	1	0	0	1	0	0	1	0	1	0	0	0	1	0	0	0	1	$v_{bA2} - v_{aA2} + v_{bA3} - v_{cA3}$
Α	2 - 7 - 7	0	1	0	0	1	0	0	1	0	1	0	0	0	1	0	1	0	0	$v_{bA2} - v_{aA2} + v_{bA3} - v_{aA3}$
А	2 - 7 - 8	0	1	0	0	1	0	0	1	0	1	0	0	1	0	0	0	0	1	$v_{bA2} - v_{aA2} + v_{aA3} - v_{cA3}$
А	2 - 7 - 9	0	1	0	0	1	0	0	1	0	1	0	0	1	0	0	0	1	0	$v_{bA2} - v_{aA2} + v_{aA3} - v_{bA3}$
А	2 - 8 - 1	0	1	0	0	1	0	1	0	0	0	0	1	0	0	1	0	0	1	$v_{aA2} - v_{cA2}$
А	2 - 8 - 2	0	1	0	0	1	0	1	0	0	0	0	1	0	1	0	0	1	0	$v_{aA2} - v_{cA2}$
А	2 - 8 - 3	0	1	0	0	1	0	1	0	0	0	0	1	1	0	0	1	0	0	$v_{aA2} - v_{cA2}$
А	2 - 8 - 4	0	1	0	0	1	0	1	0	0	0	0	1	0	0	1	0	1	0	$v_{aA2} - v_{cA2} + v_{cA3} - v_{bA3}$
Α	2 - 8 - 5	0	1	0	0	1	0	1	0	0	0	0	1	0	0	1	1	0	0	$v_{aA2} - v_{cA2} + v_{cA3} - v_{aA3}$
А	2 - 8 - 6	0	1	0	0	1	0	1	0	0	0	0	1	0	1	0	0	0	1	$v_{aA2} - v_{cA2} + v_{bA3} - v_{cA3}$
Α	2 - 8 - 7	0	1	0	0	1	0	1	0	0	0	0	1	0	1	0	1	0	0	$v_{aA2} - v_{cA2} + v_{bA3} - v_{aA3}$
А	2 - 8 - 8	0	1	0	0	1	0	1	0	0	0	0	1	1	0	0	0	0	1	$v_{aA2} - v_{cA2} + v_{aA3} - v_{cA3}$
А	2 - 8 - 9	0	1	0	0	1	0	1	0	0	0	0	1	1	0	0	0	1	0	$v_{aA2} - v_{cA2} + v_{aA3} - v_{bA3}$
Α	2 - 9 - 1	0	1	0	0	1	0	1	0	0	0	1	0	0	0	1	0	0	1	$v_{aA2} - v_{bA2}$
А	2 - 9 - 2	0	1	0	0	1	0	1	0	0	0	1	0	0	1	0	0	1	0	$v_{aA2} - v_{bA2}$
Α	2 - 9 - 3	0	1	0	0	1	0	1	0	0	0	1	0	1	0	0	1	0	0	$v_{aA2} - v_{bA2}$
А	2 - 9 - 4	0	1	0	0	1	0	1	0	0	0	1	0	0	0	1	0	1	0	$v_{aA2} - v_{bA2} + v_{cA3} - v_{bA3}$
Α	2 - 9 - 5	0	1	0	0	1	0	1	0	0	0	1	0	0	0	1	1	0	0	$v_{aA2} - v_{bA2} + v_{cA3} - v_{aA3}$
Α	2 - 9 - 6	0	1	0	0	1	0	1	0	0	0	1	0	0	1	0	0	0	1	$v_{aA2} - v_{bA2} + v_{bA3} - v_{cA3}$
Α	2 - 9 - 7	0	1	0	0	1	0	1	0	0	0	1	0	0	1	0	1	0	0	$v_{aA2} - v_{bA2} + v_{bA3} - v_{aA3}$
А	2 - 9 - 8	0	1	0	0	1	0	1	0	0	0	1	0	1	0	0	0	0	1	$v_{aA2} - v_{bA2} + v_{aA3} - v_{cA3}$
А	2 - 9 - 9	0	1	0	0	1	0	1	0	0	0	1	0	1	0	0	0	1	0	$v_{aA2} - v_{bA2} + v_{aA3} - v_{bA3}$

Tabla 21: Estados válidos de conmutación de cada convertidor matricial 3x1

				A_1						A_2						A_3				
Fase	Est. conmut.	S_1	S_2	S_3	S_4	S_5	S_6	S_1	S_2	S_3	S_4	S_5	S_6	S_1	S_2	S_3	S_4	S_5	S_6	v_{xn}
А	3 - 1 - 1	1	0	0	1	0	0	0	0	1	0	0	1	0	0	1	0	0	1	0
Α	3 - 1 - 2	1	0	0	1	0	0	0	0	1	0	0	1	0	1	0	0	1	0	0
А	3 - 1 - 3	1	0	0	1	0	0	0	0	1	0	0	1	1	0	0	1	0	0	0
Α	3 - 1 - 4	1	0	0	1	0	0	0	0	1	0	0	1	0	0	1	0	1	0	$v_{cA3} - v_{bA3}$
Α	3 - 1 - 5	1	0	0	1	0	0	0	0	1	0	0	1	0	0	1	1	0	0	$v_{cA3} - v_{aA3}$
Α	3 - 1 - 6	1	0	0	1	0	0	0	0	1	0	0	1	0	1	0	0	0	1	$v_{bA3} - v_{cA3}$
Α	3 - 1 - 7	1	0	0	1	0	0	0	0	1	0	0	1	0	1	0	1	0	0	$v_{bA3} - v_{aA3}$
Α	3 - 1 - 8	1	0	0	1	0	0	0	0	1	0	0	1	1	0	0	0	0	1	$v_{aA3} - v_{cA3}$
Α	3 - 1 - 9	1	0	0	1	0	0	0	0	1	0	0	1	1	0	0	0	1	0	$v_{aA3} - v_{bA3}$
А	3 - 2 - 1	1	0	0	1	0	0	0	1	0	0	1	0	0	0	1	0	0	1	0
Α	3 - 2 - 2	1	0	0	1	0	0	0	1	0	0	1	0	0	1	0	0	1	0	0
Α	3 - 2 - 3	1	0	0	1	0	0	0	1	0	0	1	0	1	0	0	1	0	0	0
А	3 - 2 - 4	1	0	0	1	0	0	0	1	0	0	1	0	0	0	1	0	1	0	$v_{cA3} - v_{bA3}$
Α	3 - 2 - 5	1	0	0	1	0	0	0	1	0	0	1	0	0	0	1	1	0	0	$v_{cA3} - v_{aA3}$
А	3 - 2 - 6	1	0	0	1	0	0	0	1	0	0	1	0	0	1	0	0	0	1	$v_{bA3} - v_{cA3}$
Α	3 - 2 - 7	1	0	0	1	0	0	0	1	0	0	1	0	0	1	0	1	0	0	$v_{bA3} - v_{aA3}$
А	3 - 2 - 8	1	0	0	1	0	0	0	1	0	0	1	0	1	0	0	0	0	1	$v_{aA3} - v_{cA3}$
Α	3 - 2 - 9	1	0	0	1	0	0	0	1	0	0	1	0	1	0	0	0	1	0	$v_{aA3} - v_{bA3}$
Α	3 - 3 - 1	1	0	0	1	0	0	1	0	0	1	0	0	0	0	1	0	0	1	0
Α	3 - 3 - 2	1	0	0	1	0	0	1	0	0	1	0	0	0	1	0	0	1	0	0
Α	3 - 3 - 3	1	0	0	1	0	0	1	0	0	1	0	0	1	0	0	1	0	0	0
Α	3 - 3 - 4	1	0	0	1	0	0	1	0	0	1	0	0	0	0	1	0	1	0	$v_{cA3} - v_{bA3}$
Α	3 - 3 - 5	1	0	0	1	0	0	1	0	0	1	0	0	0	0	1	1	0	0	$v_{cA3} - v_{aA3}$
А	3 - 3 - 6	1	0	0	1	0	0	1	0	0	1	0	0	0	1	0	0	0	1	$v_{bA3} - v_{cA3}$
А	3 - 3 - 7	1	0	0	1	0	0	1	0	0	1	0	0	0	1	0	1	0	0	$v_{bA3} - v_{aA3}$
А	3 - 3 - 8	1	0	0	1	0	0	1	0	0	1	0	0	1	0	0	0	0	1	$v_{aA3} - v_{cA3}$
А	3 - 3 - 9	1	0	0	1	0	0	1	0	0	1	0	0	1	0	0	0	1	0	$v_{aA3} - v_{bA3}$

Tabla 22: Estados válidos de conmutación de cada convertidor matricial $3\mathrm{x}1$

				A_1						A_2						A_3				
Fase	Est. conmut.	S_1	S_2	S_3	S_4	S_5	S_6	S_1	S_2	S_3	S_4	S_5	S_6	S_1	S_2	S_3	S_4	S_5	S_6	v_{xn}
Α	3 - 4 - 1	1	0	0	1	0	0	0	0	1	0	1	0	0	0	1	0	0	1	$v_{cA2} - v_{bA2}$
Α	3 - 4 - 2	1	0	0	1	0	0	0	0	1	0	1	0	0	1	0	0	1	0	$v_{cA2} - v_{bA2}$
А	3 - 4 - 3	1	0	0	1	0	0	0	0	1	0	1	0	1	0	0	1	0	0	$v_{cA2} - v_{bA2}$
Α	3 - 4 - 4	1	0	0	1	0	0	0	0	1	0	1	0	0	0	1	0	1	0	$v_{cA2} - v_{bA2} + v_{cA3} - v_{bA3}$
А	3 - 4 - 5	1	0	0	1	0	0	0	0	1	0	1	0	0	0	1	1	0	0	$v_{cA2} - v_{bA2} + v_{cA3} - v_{aA3}$
А	3 - 4 - 6	1	0	0	1	0	0	0	0	1	0	1	0	0	1	0	0	0	1	$v_{cA2} - v_{bA2} + v_{bA3} - v_{cA3}$
А	3 - 4 - 7	1	0	0	1	0	0	0	0	1	0	1	0	0	1	0	1	0	0	$v_{cA2} - v_{bA2} + v_{bA3} - v_{aA3}$
А	3 - 4 - 8	1	0	0	1	0	0	0	0	1	0	1	0	1	0	0	0	0	1	$v_{cA2} - v_{bA2} + v_{aA3} - v_{cA3}$
Α	3 - 4 - 9	1	0	0	1	0	0	0	0	1	0	1	0	1	0	0	0	1	0	$v_{cA2} - v_{bA2} + v_{aA3} - v_{bA3}$
Α	3 - 5 - 1	1	0	0	1	0	0	0	0	1	1	0	0	0	0	1	0	0	1	$v_{cA2} - v_{aA2}$
Α	3 - 5 - 2	1	0	0	1	0	0	0	0	1	1	0	0	0	1	0	0	1	0	$v_{cA2} - v_{aA2}$
Α	3 - 5 - 3	1	0	0	1	0	0	0	0	1	1	0	0	1	0	0	1	0	0	$v_{cA2} - v_{aA2}$
Α	3 - 5 - 4	1	0	0	1	0	0	0	0	1	1	0	0	0	0	1	0	1	0	$v_{cA2} - v_{aA2} + v_{cA3} - v_{bA3}$
Α	3 - 5 - 5	1	0	0	1	0	0	0	0	1	1	0	0	0	0	1	1	0	0	$v_{cA2} - v_{aA2} + v_{cA3} - v_{aA3}$
Α	3 - 5 - 6	1	0	0	1	0	0	0	0	1	1	0	0	0	1	0	0	0	1	$v_{cA2} - v_{aA2} + v_{bA3} - v_{cA3}$
А	3 - 5 - 7	1	0	0	1	0	0	0	0	1	1	0	0	0	1	0	1	0	0	$v_{cA2} - v_{aA2} + v_{bA3} - v_{aA3}$
Α	3 - 5 - 8	1	0	0	1	0	0	0	0	1	1	0	0	1	0	0	0	0	1	$v_{cA2} - v_{aA2} + v_{aA3} - v_{cA3}$
А	3 - 5 - 9	1	0	0	1	0	0	0	0	1	1	0	0	1	0	0	0	1	0	$v_{cA2} - v_{aA2} + v_{aA3} - v_{bA3}$
А	3 - 6 - 1	1	0	0	1	0	0	0	1	0	0	0	1	0	0	1	0	0	1	$v_{bA2} - v_{cA2}$
А	3 - 6 - 2	1	0	0	1	0	0	0	1	0	0	0	1	0	1	0	0	1	0	$v_{bA2} - v_{cA2}$
А	3 - 6 - 3	1	0	0	1	0	0	0	1	0	0	0	1	1	0	0	1	0	0	$v_{bA2} - v_{cA2}$
А	3 - 6 - 4	1	0	0	1	0	0	0	1	0	0	0	1	0	0	1	0	1	0	$v_{bA2} - v_{cA2} + v_{cA3} - v_{bA3}$
А	3 - 6 - 5	1	0	0	1	0	0	0	1	0	0	0	1	0	0	1	1	0	0	$v_{bA2} - v_{cA2} + v_{cA3} - v_{aA3}$
А	3 - 6 - 6	1	0	0	1	0	0	0	1	0	0	0	1	0	1	0	0	0	1	$v_{bA2} - v_{cA2} + v_{bA3} - v_{cA3}$
А	3 - 6 - 7	1	0	0	1	0	0	0	1	0	0	0	1	0	1	0	1	0	0	$v_{bA2} - v_{cA2} + v_{bA3} - v_{aA3}$
А	3 - 6 - 8	1	0	0	1	0	0	0	1	0	0	0	1	1	0	0	0	0	1	$v_{bA2} - v_{cA2} + v_{aA3} - v_{cA3}$
А	3 - 6 - 9	1	0	0	1	0	0	0	1	0	0	0	1	1	0	0	0	1	0	$v_{bA2} - v_{cA2} + v_{aA2} - v_{bA2}$

Tabla 23: Estados válidos de conmutación de cada convertidor matricial 3x1
	1																			
				A_1						A_2						A_3				
Fase	Est. conmut.	S_1	S_2	S_3	S_4	S_5	S_6	S_1	S_2	S_3	S_4	S_5	S_6	S_1	S_2	S_3	S_4	S_5	S_6	v_{xn}
Α	3 - 7 - 1	1	0	0	1	0	0	0	1	0	1	0	0	0	0	1	0	0	1	$v_{bA2} - v_{aA2}$
Α	3 - 7 - 2	1	0	0	1	0	0	0	1	0	1	0	0	0	1	0	0	1	0	$v_{bA2} - v_{aA2}$
Α	3 - 7 - 3	1	0	0	1	0	0	0	1	0	1	0	0	1	0	0	1	0	0	$v_{bA2} - v_{aA2}$
Α	3 - 7 - 4	1	0	0	1	0	0	0	1	0	1	0	0	0	0	1	0	1	0	$v_{bA2} - v_{aA2} + v_{cA3} - v_{bA3}$
А	3 - 7 - 5	1	0	0	1	0	0	0	1	0	1	0	0	0	0	1	1	0	0	$v_{bA2} - v_{aA2} + v_{cA3} - v_{aA3}$
А	3 - 7 - 6	1	0	0	1	0	0	0	1	0	1	0	0	0	1	0	0	0	1	$v_{bA2} - v_{aA2} + v_{bA3} - v_{cA3}$
А	3 - 7 - 7	1	0	0	1	0	0	0	1	0	1	0	0	0	1	0	1	0	0	$v_{bA2} - v_{aA2} + v_{bA3} - v_{aA3}$
А	3 - 7 - 8	1	0	0	1	0	0	0	1	0	1	0	0	1	0	0	0	0	1	$v_{bA2} - v_{aA2} + v_{aA3} - v_{cA3}$
Α	3 - 7 - 9	1	0	0	1	0	0	0	1	0	1	0	0	1	0	0	0	1	0	$v_{bA2} - v_{aA2} + v_{aA3} - v_{bA3}$
Α	3 - 8 - 1	1	0	0	1	0	0	1	0	0	0	0	1	0	0	1	0	0	1	$v_{aA2} - v_{cA2}$
Α	3 - 8 - 2	1	0	0	1	0	0	1	0	0	0	0	1	0	1	0	0	1	0	$v_{aA2} - v_{cA2}$
Α	3 - 8 - 3	1	0	0	1	0	0	1	0	0	0	0	1	1	0	0	1	0	0	$v_{aA2} - v_{cA2}$
Α	3 - 8 - 4	1	0	0	1	0	0	1	0	0	0	0	1	0	0	1	0	1	0	$v_{aA2} - v_{cA2} + v_{cA3} - v_{bA3}$
А	3 - 8 - 5	1	0	0	1	0	0	1	0	0	0	0	1	0	0	1	1	0	0	$v_{aA2} - v_{cA2} + v_{cA3} - v_{aA3}$
А	3 - 8 - 6	1	0	0	1	0	0	1	0	0	0	0	1	0	1	0	0	0	1	$v_{aA2} - v_{cA2} + v_{bA3} - v_{cA3}$
А	3 - 8 - 7	1	0	0	1	0	0	1	0	0	0	0	1	0	1	0	1	0	0	$v_{aA2} - v_{cA2} + v_{bA3} - v_{aA3}$
А	3 - 8 - 8	1	0	0	1	0	0	1	0	0	0	0	1	1	0	0	0	0	1	$v_{aA2} - v_{cA2} + v_{aA3} - v_{cA3}$
А	3 - 8 - 9	1	0	0	1	0	0	1	0	0	0	0	1	1	0	0	0	1	0	$v_{aA2} - v_{cA2} + v_{aA3} - v_{bA3}$
А	3 - 9 - 1	1	0	0	1	0	0	1	0	0	0	1	0	0	0	1	0	0	1	$v_{aA2} - v_{bA2}$
А	3 - 9 - 2	1	0	0	1	0	0	1	0	0	0	1	0	0	1	0	0	1	0	$v_{aA2} - v_{bA2}$
А	3 - 9 - 3	1	0	0	1	0	0	1	0	0	0	1	0	1	0	0	1	0	0	$v_{aA2} - v_{bA2}$
А	3 - 9 - 4	1	0	0	1	0	0	1	0	0	0	1	0	0	0	1	0	1	0	$v_{aA2} - v_{bA2} + v_{cA3} - v_{bA3}$
А	3 - 9 - 5	1	0	0	1	0	0	1	0	0	0	1	0	0	0	1	1	0	0	$v_{aA2} - v_{bA2} + v_{cA3} - v_{aA3}$
А	3 - 9 - 6	1	0	0	1	0	0	1	0	0	0	1	0	0	1	0	0	0	1	$v_{aA2} - v_{bA2} + v_{bA3} - v_{cA3}$
А	3 - 9 - 7	1	0	0	1	0	0	1	0	0	0	1	0	0	1	0	1	0	0	$v_{a42} - v_{b42} + v_{b43} - v_{a43}$
А	3 - 9 - 8	1	0	0	1	0	0	1	0	0	0	1	0	1	0	0	0	0	1	$v_{aA2} - v_{bA2} + v_{aA3} - v_{cA3}$
А	3 - 9 - 9	1	0	0	1	0	0	1	0	0	0	1	0	1	0	0	0	1	0	$v_{aA2} - v_{bA2} + v_{aA3} - v_{bA3}$

Tabla 24: Estados válidos de conmutación de cada convertidor matricial 3x1

				A_1						A_2						A_3				
Fase	Est. conmut.	S_1	S_2	S_3	S_4	S_5	S_6	S_1	S_2	S_3	S_4	S_5	S_6	S_1	S_2	S_3	S_4	S_5	S_6	v_{xn}
А	4 - 1 - 1	0	0	1	0	1	0	0	0	1	0	0	1	0	0	1	0	0	1	$v_{cA1} - v_{bA1}$
Α	4 - 1 - 2	0	0	1	0	1	0	0	0	1	0	0	1	0	1	0	0	1	0	$v_{cA1} - v_{bA1}$
Α	4 - 1 - 3	0	0	1	0	1	0	0	0	1	0	0	1	1	0	0	1	0	0	$v_{cA1} - v_{bA1}$
Α	4 - 1 - 4	0	0	1	0	1	0	0	0	1	0	0	1	0	0	1	0	1	0	$v_{cA1} - v_{bA1} + v_{cA3} - v_{bA3}$
А	4 - 1 - 5	0	0	1	0	1	0	0	0	1	0	0	1	0	0	1	1	0	0	$v_{cA1} - v_{bA1} + v_{cA3} - v_{aA3}$
Α	4 - 1 - 6	0	0	1	0	1	0	0	0	1	0	0	1	0	1	0	0	0	1	$v_{cA1} - v_{bA1} + v_{bA3} - v_{cA3}$
А	4 - 1 - 7	0	0	1	0	1	0	0	0	1	0	0	1	0	1	0	1	0	0	$v_{cA1} - v_{bA1} + v_{bA3} - v_{aA3}$
Α	4 - 1 - 8	0	0	1	0	1	0	0	0	1	0	0	1	1	0	0	0	0	1	$v_{cA1} - v_{bA1} + v_{aA3} - v_{cA3}$
А	4 - 1 - 9	0	0	1	0	1	0	0	0	1	0	0	1	1	0	0	0	1	0	$v_{cA1} - v_{bA1} + v_{aA3} - v_{bA3}$
Α	4 - 2 - 1	0	0	1	0	1	0	0	1	0	0	1	0	0	0	1	0	0	1	$v_{cA1} - v_{bA1}$
Α	4 - 2 - 2	0	0	1	0	1	0	0	1	0	0	1	0	0	1	0	0	1	0	$v_{cA1} - v_{bA1}$
Α	4 - 2 - 3	0	0	1	0	1	0	0	1	0	0	1	0	1	0	0	1	0	0	$v_{cA1} - v_{bA1}$
Α	4 - 2 - 4	0	0	1	0	1	0	0	1	0	0	1	0	0	0	1	0	1	0	$v_{cA1} - v_{bA1} + v_{cA3} - v_{bA3}$
Α	4 - 2 - 5	0	0	1	0	1	0	0	1	0	0	1	0	0	0	1	1	0	0	$v_{cA1} - v_{bA1} + v_{cA3} - v_{aA3}$
Α	4 - 2 - 6	0	0	1	0	1	0	0	1	0	0	1	0	0	1	0	0	0	1	$v_{cA1} - v_{bA1} + v_{bA3} - v_{cA3}$
Α	4 - 2 - 7	0	0	1	0	1	0	0	1	0	0	1	0	0	1	0	1	0	0	$v_{cA1} - v_{bA1} + v_{bA3} - v_{aA3}$
Α	4 - 2 - 8	0	0	1	0	1	0	0	1	0	0	1	0	1	0	0	0	0	1	$v_{cA1} - v_{bA1} + v_{aA3} - v_{cA3}$
Α	4 - 2 - 9	0	0	1	0	1	0	0	1	0	0	1	0	1	0	0	0	1	0	$v_{cA1} - v_{bA1} + v_{aA3} - v_{bA3}$
Α	4 - 3 - 1	0	0	1	0	1	0	1	0	0	1	0	0	0	0	1	0	0	1	$v_{cA1} - v_{bA1}$
Α	4 - 3 - 2	0	0	1	0	1	0	1	0	0	1	0	0	0	1	0	0	1	0	$v_{cA1} - v_{bA1}$
Α	4 - 3 - 3	0	0	1	0	1	0	1	0	0	1	0	0	1	0	0	1	0	0	$v_{cA1} - v_{bA1}$
Α	4 - 3 - 4	0	0	1	0	1	0	1	0	0	1	0	0	0	0	1	0	1	0	$v_{cA1} - v_{bA1} + v_{cA3} - v_{bA3}$
А	4 - 3 - 5	0	0	1	0	1	0	1	0	0	1	0	0	0	0	1	1	0	0	$v_{cA1} - v_{bA1} + v_{cA3} - v_{aA3}$
А	4 - 3 - 6	0	0	1	0	1	0	1	0	0	1	0	0	0	1	0	0	0	1	$v_{cA1} - v_{bA1} + v_{bA3} - v_{cA3}$
А	4 - 3 - 7	0	0	1	0	1	0	1	0	0	1	0	0	0	1	0	1	0	0	$v_{cA1} - v_{bA1} + v_{bA3} - v_{aA3}$
А	4 - 3 - 8	0	0	1	0	1	0	1	0	0	1	0	0	1	0	0	0	0	1	$v_{cA1} - v_{bA1} + v_{aA3} - v_{cA3}$
А	4 - 3 - 9	0	0	1	0	1	0	1	0	0	1	0	0	1	0	0	0	1	0	$v_{cA1} - v_{bA1} + v_{aA3} - v_{bA3}$

Tabla 25: Estados válidos de conmutación de cada convertidor matricial 3x1

				A_1						A_2						A_3				
Fase	Est. conmut.	S_1	S_2	S_3	S_4	S_5	S_6	S_1	S_2	S_3	S_4	S_5	S_6	S_1	S_2	S_3	S_4	S_5	S_6	v_{xn}
Α	4 - 4 - 1	0	0	1	0	1	0	0	0	1	0	1	0	0	0	1	0	0	1	$v_{cA1} - v_{bA1} + v_{cA2} - v_{bA2}$
Α	4 - 4 - 2	0	0	1	0	1	0	0	0	1	0	1	0	0	1	0	0	1	0	$v_{cA1} - v_{bA1} + v_{cA2} - v_{bA2}$
Α	4 - 4 - 3	0	0	1	0	1	0	0	0	1	0	1	0	1	0	0	1	0	0	$v_{cA1} - v_{bA1} + v_{cA2} - v_{bA2}$
Α	4 - 4 - 4	0	0	1	0	1	0	0	0	1	0	1	0	0	0	1	0	1	0	$v_{cA1} - v_{bA1} + v_{cA2} - v_{bA2} + v_{cA3} - v_{bA3}$
Α	4 - 4 - 5	0	0	1	0	1	0	0	0	1	0	1	0	0	0	1	1	0	0	$v_{cA1} - v_{bA1} + v_{cA2} - v_{bA2} + v_{cA3} - v_{aA3}$
Α	4 - 4 - 6	0	0	1	0	1	0	0	0	1	0	1	0	0	1	0	0	0	1	$v_{cA1} - v_{bA1} + v_{cA2} - v_{bA2} + v_{bA3} - v_{cA3}$
Α	4 - 4 - 7	0	0	1	0	1	0	0	0	1	0	1	0	0	1	0	1	0	0	$v_{cA1} - v_{bA1} + v_{cA2} - v_{bA2} + v_{bA3} - v_{aA3}$
Α	4 - 4 - 8	0	0	1	0	1	0	0	0	1	0	1	0	1	0	0	0	0	1	$v_{cA1} - v_{bA1} + v_{cA2} - v_{bA2} + v_{aA3} - v_{cA3}$
Α	4 - 4 - 9	0	0	1	0	1	0	0	0	1	0	1	0	1	0	0	0	1	0	$v_{cA1} - v_{bA1} + v_{cA2} - v_{bA2} + v_{aA3} - v_{bA3}$
Α	4 - 5 - 1	0	0	1	0	1	0	0	0	1	1	0	0	0	0	1	0	0	1	$v_{cA1} - v_{bA1} + v_{cA2} - v_{aA2}$
Α	4 - 5 - 2	0	0	1	0	1	0	0	0	1	1	0	0	0	1	0	0	1	0	$v_{cA1} - v_{bA1} + v_{cA2} - v_{aA2}$
Α	4 - 5 - 3	0	0	1	0	1	0	0	0	1	1	0	0	1	0	0	1	0	0	$v_{cA1} - v_{bA1} + v_{cA2} - v_{aA2}$
Α	4 - 5 - 4	0	0	1	0	1	0	0	0	1	1	0	0	0	0	1	0	1	0	$v_{cA1} - v_{bA1} + v_{cA2} - v_{aA2} + v_{cA3} - v_{bA3}$
Α	4 - 5 - 5	0	0	1	0	1	0	0	0	1	1	0	0	0	0	1	1	0	0	$v_{cA1} - v_{bA1} + v_{cA2} - v_{aA2} + v_{cA3} - v_{aA3}$
Α	4 - 5 - 6	0	0	1	0	1	0	0	0	1	1	0	0	0	1	0	0	0	1	$v_{cA1} - v_{bA1} + v_{cA2} - v_{aA2} + v_{bA3} - v_{cA3}$
Α	4 - 5 - 7	0	0	1	0	1	0	0	0	1	1	0	0	0	1	0	1	0	0	$v_{cA1} - v_{bA1} + v_{cA2} - v_{aA2} + v_{bA3} - v_{aA3}$
Α	4 - 5 - 8	0	0	1	0	1	0	0	0	1	1	0	0	1	0	0	0	0	1	$v_{cA1} - v_{bA1} + v_{cA2} - v_{aA2} + v_{aA3} - v_{cA3}$
Α	4 - 5 - 9	0	0	1	0	1	0	0	0	1	1	0	0	1	0	0	0	1	0	$v_{cA1} - v_{bA1} + v_{cA2} - v_{aA2} + v_{aA3} - v_{bA3}$
Α	4 - 6 - 1	0	0	1	0	1	0	0	1	0	0	0	1	0	0	1	0	0	1	$v_{cA1} - v_{bA1} + v_{bA2} - v_{cA2}$
Α	4 - 6 - 2	0	0	1	0	1	0	0	1	0	0	0	1	0	1	0	0	1	0	$v_{cA1} - v_{bA1} + v_{bA2} - v_{cA2}$
Α	4 - 6 - 3	0	0	1	0	1	0	0	1	0	0	0	1	1	0	0	1	0	0	$v_{cA1} - v_{bA1} + v_{bA2} - v_{cA2}$
Α	4 - 6 - 4	0	0	1	0	1	0	0	1	0	0	0	1	0	0	1	0	1	0	$v_{cA1} - v_{bA1} + v_{bA2} - v_{cA2} + v_{cA3} - v_{bA3}$
Α	4 - 6 - 5	0	0	1	0	1	0	0	1	0	0	0	1	0	0	1	1	0	0	$v_{cA1} - v_{bA1} + v_{bA2} - v_{cA2} + v_{cA3} - v_{aA3}$
Α	4 - 6 - 6	0	0	1	0	1	0	0	1	0	0	0	1	0	1	0	0	0	1	$v_{cA1} - v_{bA1} + v_{bA2} - v_{cA2} + v_{bA3} - v_{cA3}$
Α	4 - 6 - 7	0	0	1	0	1	0	0	1	0	0	0	1	0	1	0	1	0	0	$v_{cA1} - v_{bA1} + v_{bA2} - v_{cA2} + v_{bA3} - v_{aA3}$
Α	4 - 6 - 8	0	0	1	0	1	0	0	1	0	0	0	1	1	0	0	0	0	1	$v_{cA1} - v_{bA1} + v_{bA2} - v_{cA2} + v_{aA3} - v_{cA3}$
А	4 - 6 - 9	0	0	1	0	1	0	0	1	0	0	0	1	1	0	0	0	1	0	$v_{cA1} - v_{bA1} + v_{bA2} - v_{cA2} + v_{aA2} - v_{bA2}$

Tabla 26: Estados válidos de conmutación de cada convertidor matricial 3x1

				A_1						A_2						A_3				
Fase	Est. conmut.	S_1	S_2	S_3	S_4	S_5	S_6	S_1	S_2	S_3	S_4	S_5	S_6	S_1	S_2	S_3	S_4	S_5	S_6	v_{xn}
А	4 - 7 - 1	0	0	1	0	1	0	0	1	0	1	0	0	0	0	1	0	0	1	$v_{cA1} - v_{bA1} + v_{bA2} - v_{aA2}$
А	4 - 7 - 2	0	0	1	0	1	0	0	1	0	1	0	0	0	1	0	0	1	0	$v_{cA1} - v_{bA1} + v_{bA2} - v_{aA2}$
А	4 - 7 - 3	0	0	1	0	1	0	0	1	0	1	0	0	1	0	0	1	0	0	$v_{cA1} - v_{bA1} + v_{bA2} - v_{aA2}$
А	4 - 7 - 4	0	0	1	0	1	0	0	1	0	1	0	0	0	0	1	0	1	0	$v_{cA1} - v_{bA1} + v_{bA2} - v_{aA2} + v_{cA3} - v_{bA3}$
А	4 - 7 - 5	0	0	1	0	1	0	0	1	0	1	0	0	0	0	1	1	0	0	$v_{cA1} - v_{bA1} + v_{bA2} - v_{aA2} + v_{cA3} - v_{aA3}$
А	4 - 7 - 6	0	0	1	0	1	0	0	1	0	1	0	0	0	1	0	0	0	1	$v_{cA1} - v_{bA1} + v_{bA2} - v_{aA2} + v_{bA3} - v_{cA3}$
А	4 - 7 - 7	0	0	1	0	1	0	0	1	0	1	0	0	0	1	0	1	0	0	$v_{cA1} - v_{bA1} + v_{bA2} - v_{aA2} + v_{bA3} - v_{aA3}$
Α	4 - 7 - 8	0	0	1	0	1	0	0	1	0	1	0	0	1	0	0	0	0	1	$v_{cA1} - v_{bA1} + v_{bA2} - v_{aA2} + v_{aA3} - v_{cA3}$
Α	4 - 7 - 9	0	0	1	0	1	0	0	1	0	1	0	0	1	0	0	0	1	0	$v_{cA1} - v_{bA1} + v_{bA2} - v_{aA2} + v_{aA3} - v_{bA3}$
Α	4 - 8 - 1	0	0	1	0	1	0	1	0	0	0	0	1	0	0	1	0	0	1	$v_{cA1} - v_{bA1} + v_{aA2} - v_{cA2}$
Α	4 - 8 - 2	0	0	1	0	1	0	1	0	0	0	0	1	0	1	0	0	1	0	$v_{cA1} - v_{bA1} + v_{aA2} - v_{cA2}$
Α	4 - 8 - 3	0	0	1	0	1	0	1	0	0	0	0	1	1	0	0	1	0	0	$v_{cA1} - v_{bA1} + v_{aA2} - v_{cA2}$
Α	4 - 8 - 4	0	0	1	0	1	0	1	0	0	0	0	1	0	0	1	0	1	0	$v_{cA1} - v_{bA1} + v_{aA2} - v_{cA2} + v_{cA3} - v_{bA3}$
Α	4 - 8 - 5	0	0	1	0	1	0	1	0	0	0	0	1	0	0	1	1	0	0	$v_{cA1} - v_{bA1} + v_{aA2} - v_{cA2} + v_{cA3} - v_{aA3}$
Α	4 - 8 - 6	0	0	1	0	1	0	1	0	0	0	0	1	0	1	0	0	0	1	$v_{cA1} - v_{bA1} + v_{aA2} - v_{cA2} + v_{bA3} - v_{cA3}$
Α	4 - 8 - 7	0	0	1	0	1	0	1	0	0	0	0	1	0	1	0	1	0	0	$v_{cA1} - v_{bA1} + v_{aA2} - v_{cA2} + v_{bA3} - v_{aA3}$
Α	4 - 8 - 8	0	0	1	0	1	0	1	0	0	0	0	1	1	0	0	0	0	1	$v_{cA1} - v_{bA1} + v_{aA2} - v_{cA2} + v_{aA3} - v_{cA3}$
А	4 - 8 - 9	0	0	1	0	1	0	1	0	0	0	0	1	1	0	0	0	1	0	$v_{cA1} - v_{bA1} + v_{aA2} - v_{cA2} + v_{aA3} - v_{bA3}$
А	4 - 9 - 1	0	0	1	0	1	0	1	0	0	0	1	0	0	0	1	0	0	1	$v_{cA1} - v_{bA1} + v_{aA2} - v_{bA2}$
А	4 - 9 - 2	0	0	1	0	1	0	1	0	0	0	1	0	0	1	0	0	1	0	$v_{cA1} - v_{bA1} + v_{aA2} - v_{bA2}$
А	4 - 9 - 3	0	0	1	0	1	0	1	0	0	0	1	0	1	0	0	1	0	0	$v_{cA1} - v_{bA1} + v_{aA2} - v_{bA2}$
А	4 - 9 - 4	0	0	1	0	1	0	1	0	0	0	1	0	0	0	1	0	1	0	$v_{cA1} - v_{bA1} + v_{aA2} - v_{bA2} + v_{cA3} - v_{bA3}$
А	4 - 9 - 5	0	0	1	0	1	0	1	0	0	0	1	0	0	0	1	1	0	0	$v_{cA1} - v_{bA1} + v_{aA2} - v_{bA2} + v_{cA3} - v_{aA3}$
А	4 - 9 - 6	0	0	1	0	1	0	1	0	0	0	1	0	0	1	0	0	0	1	$v_{cA1} - v_{bA1} + v_{aA2} - v_{bA2} + v_{bA3} - v_{cA3}$
А	4 - 9 - 7	0	0	1	0	1	0	1	0	0	0	1	0	0	1	0	1	0	0	$v_{cA1} - v_{bA1} + v_{aA2} - v_{bA2} + v_{bA3} - v_{aA3}$
А	4 - 9 - 8	0	0	1	0	1	0	1	0	0	0	1	0	1	0	0	0	0	1	$v_{cA1} - v_{bA1} + v_{aA2} - v_{bA2} + v_{aA3} - v_{cA3}$
А	4 - 9 - 9	0	0	1	0	1	0	1	0	0	0	1	0	1	0	0	0	1	0	$v_{cA1} - v_{bA1} + v_{aA2} - v_{bA2} + v_{aA3} - v_{bA3}$

Tabla 27: Estados válidos de conmutación de cada convertidor matricial 3x1

				A_1						A_2						A_3				
Fase	Est. conmut.	S_1	S_2	S_3	S_4	S_5	S_6	S_1	S_2	S_3	S_4	S_5	S_6	S_1	S_2	S_3	S_4	S_5	S_6	v_{xn}
Α	5 - 1 - 1	0	0	1	1	0	0	0	0	1	0	0	1	0	0	1	0	0	1	$v_{cA1} - v_{aA1}$
Α	5 - 1 - 2	0	0	1	1	0	0	0	0	1	0	0	1	0	1	0	0	1	0	$v_{cA1} - v_{aA1}$
Α	5 - 1 - 3	0	0	1	1	0	0	0	0	1	0	0	1	1	0	0	1	0	0	$v_{cA1} - v_{aA1}$
Α	5 - 1 - 4	0	0	1	1	0	0	0	0	1	0	0	1	0	0	1	0	1	0	$v_{cA1} - v_{aA1} + v_{cA3} - v_{bA3}$
Α	5 - 1 - 5	0	0	1	1	0	0	0	0	1	0	0	1	0	0	1	1	0	0	$v_{cA1} - v_{aA1} + v_{cA3} - v_{aA3}$
Α	5 - 1 - 6	0	0	1	1	0	0	0	0	1	0	0	1	0	1	0	0	0	1	$v_{cA1} - v_{aA1} + v_{bA3} - v_{cA3}$
Α	5 - 1 - 7	0	0	1	1	0	0	0	0	1	0	0	1	0	1	0	1	0	0	$v_{cA1} - v_{aA1} + v_{bA3} - v_{aA3}$
Α	5 - 1 - 8	0	0	1	1	0	0	0	0	1	0	0	1	1	0	0	0	0	1	$v_{cA1} - v_{aA1} + v_{aA3} - v_{cA3}$
А	5 - 1 - 9	0	0	1	1	0	0	0	0	1	0	0	1	1	0	0	0	1	0	$v_{cA1} - v_{aA1} + v_{aA3} - v_{bA3}$
А	5 - 2 - 1	0	0	1	1	0	0	0	1	0	0	1	0	0	0	1	0	0	1	$v_{cA1} - v_{aA1}$
А	5 - 2 - 2	0	0	1	1	0	0	0	1	0	0	1	0	0	1	0	0	1	0	$v_{cA1} - v_{aA1}$
А	5 - 2 - 3	0	0	1	1	0	0	0	1	0	0	1	0	1	0	0	1	0	0	$v_{cA1} - v_{aA1}$
А	5 - 2 - 4	0	0	1	1	0	0	0	1	0	0	1	0	0	0	1	0	1	0	$v_{cA1} - v_{aA1} + v_{cA3} - v_{bA3}$
А	5 - 2 - 5	0	0	1	1	0	0	0	1	0	0	1	0	0	0	1	1	0	0	$v_{cA1} - v_{aA1} + v_{cA3} - v_{aA3}$
А	5 - 2 - 6	0	0	1	1	0	0	0	1	0	0	1	0	0	1	0	0	0	1	$v_{cA1} - v_{aA1} + v_{bA3} - v_{cA3}$
Α	5 - 2 - 7	0	0	1	1	0	0	0	1	0	0	1	0	0	1	0	1	0	0	$v_{cA1} - v_{aA1} + v_{bA3} - v_{aA3}$
А	5 - 2 - 8	0	0	1	1	0	0	0	1	0	0	1	0	1	0	0	0	0	1	$v_{cA1} - v_{aA1} + v_{aA3} - v_{cA3}$
А	5 - 2 - 9	0	0	1	1	0	0	0	1	0	0	1	0	1	0	0	0	1	0	$v_{cA1} - v_{aA1} + v_{aA3} - v_{bA3}$
Α	5 - 3 - 1	0	0	1	1	0	0	1	0	0	1	0	0	0	0	1	0	0	1	$v_{cA1} - v_{aA1}$
А	5 - 3 - 2	0	0	1	1	0	0	1	0	0	1	0	0	0	1	0	0	1	0	$v_{cA1} - v_{aA1}$
Α	5 - 3 - 3	0	0	1	1	0	0	1	0	0	1	0	0	1	0	0	1	0	0	$v_{cA1} - v_{aA1}$
А	5 - 3 - 4	0	0	1	1	0	0	1	0	0	1	0	0	0	0	1	0	1	0	$v_{cA1} - v_{aA1} + v_{cA3} - v_{bA3}$
Α	5 - 3 - 5	0	0	1	1	0	0	1	0	0	1	0	0	0	0	1	1	0	0	$v_{cA1} - v_{aA1} + v_{cA3} - v_{aA3}$
Α	5 - 3 - 6	0	0	1	1	0	0	1	0	0	1	0	0	0	1	0	0	0	1	$v_{cA1} - v_{aA1} + v_{bA3} - v_{cA3}$
Α	5 - 3 - 7	0	0	1	1	0	0	1	0	0	1	0	0	0	1	0	1	0	0	$v_{cA1} - v_{aA1} + v_{bA3} - v_{aA3}$
Α	5 - 3 - 8	0	0	1	1	0	0	1	0	0	1	0	0	1	0	0	0	0	1	$v_{cA1} - v_{aA1} + v_{aA3} - v_{cA3}$
А	5 - 3 - 9	0	0	1	1	0	0	1	0	0	1	0	0	1	0	0	0	1	0	$v_{cA1} - v_{aA1} + v_{aA3} - v_{bA3}$

Tabla 28: Estados válidos de conmutación de cada convertidor matricial 3x1

				A_1						A_2						A_3				
Fase	Est. conmut.	S_1	S_2	S_3	S_4	S_5	S_6	S_1	S_2	S_3	S_4	S_5	S_6	S_1	S_2	S_3	S_4	S_5	S_6	v_{xn}
Α	5 - 4 - 1	0	0	1	1	0	0	0	0	1	0	1	0	0	0	1	0	0	1	$v_{cA1} - v_{aA1} + v_{cA2} - v_{bA2}$
Α	5 - 4 - 2	0	0	1	1	0	0	0	0	1	0	1	0	0	1	0	0	1	0	$v_{cA1} - v_{aA1} + v_{cA2} - v_{bA2}$
Α	5 - 4 - 3	0	0	1	1	0	0	0	0	1	0	1	0	1	0	0	1	0	0	$v_{cA1} - v_{aA1} + v_{cA2} - v_{bA2}$
Α	5 - 4 - 4	0	0	1	1	0	0	0	0	1	0	1	0	0	0	1	0	1	0	$v_{cA1} - v_{aA1} + v_{cA2} - v_{bA2} + v_{cA3} - v_{bA3}$
Α	5 - 4 - 5	0	0	1	1	0	0	0	0	1	0	1	0	0	0	1	1	0	0	$v_{cA1} - v_{aA1} + v_{cA2} - v_{bA2} + v_{cA3} - v_{aA3}$
Α	5 - 4 - 6	0	0	1	1	0	0	0	0	1	0	1	0	0	1	0	0	0	1	$v_{cA1} - v_{aA1} + v_{cA2} - v_{bA2} + v_{bA3} - v_{cA3}$
Α	5 - 4 - 7	0	0	1	1	0	0	0	0	1	0	1	0	0	1	0	1	0	0	$v_{cA1} - v_{aA1} + v_{cA2} - v_{bA2} + v_{bA3} - v_{aA3}$
Α	5 - 4 - 8	0	0	1	1	0	0	0	0	1	0	1	0	1	0	0	0	0	1	$v_{cA1} - v_{aA1} + v_{cA2} - v_{bA2} + v_{aA3} - v_{cA3}$
Α	5 - 4 - 9	0	0	1	1	0	0	0	0	1	0	1	0	1	0	0	0	1	0	$v_{cA1} - v_{aA1} + v_{cA2} - v_{bA2} + v_{aA3} - v_{bA3}$
Α	5 - 5 - 1	0	0	1	1	0	0	0	0	1	1	0	0	0	0	1	0	0	1	$v_{cA1} - v_{aA1} + v_{cA2} - v_{aA2}$
Α	5 - 5 - 2	0	0	1	1	0	0	0	0	1	1	0	0	0	1	0	0	1	0	$v_{cA1} - v_{aA1} + v_{cA2} - v_{aA2}$
Α	5 - 5 - 3	0	0	1	1	0	0	0	0	1	1	0	0	1	0	0	1	0	0	$v_{cA1} - v_{aA1} + v_{cA2} - v_{aA2}$
Α	5 - 5 - 4	0	0	1	1	0	0	0	0	1	1	0	0	0	0	1	0	1	0	$v_{cA1} - v_{aA1} + v_{cA2} - v_{aA2} + v_{cA3} - v_{bA3}$
Α	5 - 5 - 5	0	0	1	1	0	0	0	0	1	1	0	0	0	0	1	1	0	0	$v_{cA1} - v_{aA1} + v_{cA2} - v_{aA2} + v_{cA3} - v_{aA3}$
Α	5 - 5 - 6	0	0	1	1	0	0	0	0	1	1	0	0	0	1	0	0	0	1	$v_{cA1} - v_{aA1} + v_{cA2} - v_{aA2} + v_{bA3} - v_{cA3}$
Α	5 - 5 - 7	0	0	1	1	0	0	0	0	1	1	0	0	0	1	0	1	0	0	$v_{cA1} - v_{aA1} + v_{cA2} - v_{aA2} + v_{bA3} - v_{aA3}$
Α	5 - 5 - 8	0	0	1	1	0	0	0	0	1	1	0	0	1	0	0	0	0	1	$v_{cA1} - v_{aA1} + v_{cA2} - v_{aA2} + v_{aA3} - v_{cA3}$
Α	5 - 5 - 9	0	0	1	1	0	0	0	0	1	1	0	0	1	0	0	0	1	0	$v_{cA1} - v_{aA1} + v_{cA2} - v_{aA2} + v_{aA3} - v_{bA3}$
Α	5 - 6 - 1	0	0	1	1	0	0	0	1	0	0	0	1	0	0	1	0	0	1	$v_{cA1} - v_{aA1} + v_{bA2} - v_{cA2}$
Α	5 - 6 - 2	0	0	1	1	0	0	0	1	0	0	0	1	0	1	0	0	1	0	$v_{cA1} - v_{aA1} + v_{bA2} - v_{cA2}$
Α	5 - 6 - 3	0	0	1	1	0	0	0	1	0	0	0	1	1	0	0	1	0	0	$v_{cA1} - v_{aA1} + v_{bA2} - v_{cA2}$
Α	5 - 6 - 4	0	0	1	1	0	0	0	1	0	0	0	1	0	0	1	0	1	0	$v_{cA1} - v_{aA1} + v_{bA2} - v_{cA2} + v_{cA3} - v_{bA3}$
Α	5 - 6 - 5	0	0	1	1	0	0	0	1	0	0	0	1	0	0	1	1	0	0	$v_{cA1} - v_{aA1} + v_{bA2} - v_{cA2} + v_{cA3} - v_{aA3}$
Α	5 - 6 - 6	0	0	1	1	0	0	0	1	0	0	0	1	0	1	0	0	0	1	$v_{cA1} - v_{aA1} + v_{bA2} - v_{cA2} + v_{bA3} - v_{cA3}$
Α	5 - 6 - 7	0	0	1	1	0	0	0	1	0	0	0	1	0	1	0	1	0	0	$v_{cA1} - v_{aA1} + v_{bA2} - v_{cA2} + v_{bA3} - v_{aA3}$
А	5 - 6 - 8	0	0	1	1	0	0	0	1	0	0	0	1	1	0	0	0	0	1	$v_{cA1} - v_{aA1} + v_{bA2} - v_{cA2} + v_{aA3} - v_{cA3}$
Α	5 - 6 - 9	0	0	1	1	0	0	0	1	0	0	0	1	1	0	0	0	1	0	$v_{cA1} - v_{aA1} + v_{bA2} - v_{cA2} + v_{aA2} - v_{bA2}$

Tabla 29: Estados válidos de conmutación de cada convertidor matricial 3x1

				A_1						A_2						A_3				
Fase	Est. conmut.	S_1	S_2	S_3	S_4	S_5	S_6	S_1	S_2	S_3	S_4	S_5	S_6	S_1	S_2	S_3	S_4	S_5	S_6	v_{xn}
А	5 - 7 - 1	0	0	1	1	0	0	0	1	0	1	0	0	0	0	1	0	0	1	$v_{cA1} - v_{aA1} + v_{bA2} - v_{aA2}$
Α	5 - 7 - 2	0	0	1	1	0	0	0	1	0	1	0	0	0	1	0	0	1	0	$v_{cA1} - v_{aA1} + v_{bA2} - v_{aA2}$
Α	5 - 7 - 3	0	0	1	1	0	0	0	1	0	1	0	0	1	0	0	1	0	0	$v_{cA1} - v_{aA1} + v_{bA2} - v_{aA2}$
Α	5 - 7 - 4	0	0	1	1	0	0	0	1	0	1	0	0	0	0	1	0	1	0	$v_{cA1} - v_{aA1} + v_{bA2} - v_{aA2} + v_{cA3} - v_{bA3}$
Α	5 - 7 - 5	0	0	1	1	0	0	0	1	0	1	0	0	0	0	1	1	0	0	$v_{cA1} - v_{aA1} + v_{bA2} - v_{aA2} + v_{cA3} - v_{aA3}$
Α	5 - 7 - 6	0	0	1	1	0	0	0	1	0	1	0	0	0	1	0	0	0	1	$v_{cA1} - v_{aA1} + v_{bA2} - v_{aA2} + v_{bA3} - v_{cA3}$
Α	5 - 7 - 7	0	0	1	1	0	0	0	1	0	1	0	0	0	1	0	1	0	0	$v_{cA1} - v_{aA1} + v_{bA2} - v_{aA2} + v_{bA3} - v_{aA3}$
Α	5 - 7 - 8	0	0	1	1	0	0	0	1	0	1	0	0	1	0	0	0	0	1	$v_{cA1} - v_{aA1} + v_{bA2} - v_{aA2} + v_{aA3} - v_{cA3}$
Α	5 - 7 - 9	0	0	1	1	0	0	0	1	0	1	0	0	1	0	0	0	1	0	$v_{cA1} - v_{aA1} + v_{bA2} - v_{aA2} + v_{aA3} - v_{bA3}$
Α	5 - 8 - 1	0	0	1	1	0	0	1	0	0	0	0	1	0	0	1	0	0	1	$v_{cA1} - v_{aA1} + v_{aA2} - v_{cA2}$
Α	5 - 8 - 2	0	0	1	1	0	0	1	0	0	0	0	1	0	1	0	0	1	0	$v_{cA1} - v_{aA1} + v_{aA2} - v_{cA2}$
Α	5 - 8 - 3	0	0	1	1	0	0	1	0	0	0	0	1	1	0	0	1	0	0	$v_{cA1} - v_{aA1} + v_{aA2} - v_{cA2}$
Α	5 - 8 - 4	0	0	1	1	0	0	1	0	0	0	0	1	0	0	1	0	1	0	$v_{cA1} - v_{aA1} + v_{aA2} - v_{cA2} + v_{cA3} - v_{bA3}$
Α	5 - 8 - 5	0	0	1	1	0	0	1	0	0	0	0	1	0	0	1	1	0	0	$v_{cA1} - v_{aA1} + v_{aA2} - v_{cA2} + v_{cA3} - v_{aA3}$
Α	5 - 8 - 6	0	0	1	1	0	0	1	0	0	0	0	1	0	1	0	0	0	1	$v_{cA1} - v_{aA1} + v_{aA2} - v_{cA2} + v_{bA3} - v_{cA3}$
Α	5 - 8 - 7	0	0	1	1	0	0	1	0	0	0	0	1	0	1	0	1	0	0	$v_{cA1} - v_{aA1} + v_{aA2} - v_{cA2} + v_{bA3} - v_{aA3}$
Α	5 - 8 - 8	0	0	1	1	0	0	1	0	0	0	0	1	1	0	0	0	0	1	$v_{cA1} - v_{aA1} + v_{aA2} - v_{cA2} + v_{aA3} - v_{cA3}$
Α	5 - 8 - 9	0	0	1	1	0	0	1	0	0	0	0	1	1	0	0	0	1	0	$v_{cA1} - v_{aA1} + v_{aA2} - v_{cA2} + v_{aA3} - v_{bA3}$
Α	5 - 9 - 1	0	0	1	1	0	0	1	0	0	0	1	0	0	0	1	0	0	1	$v_{cA1} - v_{aA1} + v_{aA2} - v_{bA2}$
Α	5 - 9 - 2	0	0	1	1	0	0	1	0	0	0	1	0	0	1	0	0	1	0	$v_{cA1} - v_{aA1} + v_{aA2} - v_{bA2}$
Α	5 - 9 - 3	0	0	1	1	0	0	1	0	0	0	1	0	1	0	0	1	0	0	$v_{cA1} - v_{aA1} + v_{aA2} - v_{bA2}$
Α	5 - 9 - 4	0	0	1	1	0	0	1	0	0	0	1	0	0	0	1	0	1	0	$v_{cA1} - v_{aA1} + v_{aA2} - v_{bA2} + v_{cA3} - v_{bA3}$
Α	5 - 9 - 5	0	0	1	1	0	0	1	0	0	0	1	0	0	0	1	1	0	0	$v_{cA1} - v_{aA1} + v_{aA2} - v_{bA2} + v_{cA3} - v_{aA3}$
Α	5 - 9 - 6	0	0	1	1	0	0	1	0	0	0	1	0	0	1	0	0	0	1	$v_{cA1} - v_{aA1} + v_{aA2} - v_{bA2} + v_{bA3} - v_{cA3}$
Α	5 - 9 - 7	0	0	1	1	0	0	1	0	0	0	1	0	0	1	0	1	0	0	$v_{cA1} - v_{aA1} + v_{aA2} - v_{bA2} + v_{bA3} - v_{aA3}$
Α	5 - 9 - 8	0	0	1	1	0	0	1	0	0	0	1	0	1	0	0	0	0	1	$v_{cA1} - v_{aA1} + v_{aA2} - v_{bA2} + v_{aA3} - v_{cA3}$
Α	5 - 9 - 9	0	0	1	1	0	0	1	0	0	0	1	0	1	0	0	0	1	0	$v_{cA1} - v_{aA1} + v_{aA2} - v_{bA2} + v_{aA3} - v_{bA3}$

Tabla 30: Estados válidos de conmutación de cada convertidor matricial 3x1

				A_1						A_2						A_3				
Fase	Est. conmut.	S_1	S_2	S_3	S_4	S_5	S_6	S_1	S_2	S_3	S_4	S_5	S_6	S_1	S_2	S_3	S_4	S_5	S_6	v_{xn}
А	6 - 1 - 1	0	1	0	0	0	1	0	0	1	0	0	1	0	0	1	0	0	1	$v_{bA1} - v_{cA1}$
А	6 - 1 - 2	0	1	0	0	0	1	0	0	1	0	0	1	0	1	0	0	1	0	$v_{bA1} - v_{cA1}$
Α	6 - 1 - 3	0	1	0	0	0	1	0	0	1	0	0	1	1	0	0	1	0	0	$v_{bA1} - v_{cA1}$
А	6 - 1 - 4	0	1	0	0	0	1	0	0	1	0	0	1	0	0	1	0	1	0	$v_{bA1} - v_{cA1} + v_{cA3} - v_{bA3}$
Α	6 - 1 - 5	0	1	0	0	0	1	0	0	1	0	0	1	0	0	1	1	0	0	$v_{bA1} - v_{cA1} + v_{cA3} - v_{aA3}$
Α	6 - 1 - 6	0	1	0	0	0	1	0	0	1	0	0	1	0	1	0	0	0	1	$v_{bA1} - v_{cA1} + v_{bA3} - v_{cA3}$
Α	6 - 1 - 7	0	1	0	0	0	1	0	0	1	0	0	1	0	1	0	1	0	0	$v_{bA1} - v_{cA1} + v_{bA3} - v_{aA3}$
А	6 - 1 - 8	0	1	0	0	0	1	0	0	1	0	0	1	1	0	0	0	0	1	$v_{bA1} - v_{cA1} + v_{aA3} - v_{cA3}$
Α	6 - 1 - 9	0	1	0	0	0	1	0	0	1	0	0	1	1	0	0	0	1	0	$v_{bA1} - v_{cA1} + v_{aA3} - v_{bA3}$
А	6 - 2 - 1	0	1	0	0	0	1	0	1	0	0	1	0	0	0	1	0	0	1	$v_{bA1} - v_{cA1}$
Α	6 - 2 - 2	0	1	0	0	0	1	0	1	0	0	1	0	0	1	0	0	1	0	$v_{bA1} - v_{cA1}$
Α	6 - 2 - 3	0	1	0	0	0	1	0	1	0	0	1	0	1	0	0	1	0	0	$v_{bA1} - v_{cA1}$
Α	6 - 2 - 4	0	1	0	0	0	1	0	1	0	0	1	0	0	0	1	0	1	0	$v_{bA1} - v_{cA1} + v_{cA3} - v_{bA3}$
Α	6 - 2 - 5	0	1	0	0	0	1	0	1	0	0	1	0	0	0	1	1	0	0	$v_{bA1} - v_{cA1} + v_{cA3} - v_{aA3}$
Α	6 - 2 - 6	0	1	0	0	0	1	0	1	0	0	1	0	0	1	0	0	0	1	$v_{bA1} - v_{cA1} + v_{bA3} - v_{cA3}$
Α	6 - 2 - 7	0	1	0	0	0	1	0	1	0	0	1	0	0	1	0	1	0	0	$v_{bA1} - v_{cA1} + v_{bA3} - v_{aA3}$
Α	6 - 2 - 8	0	1	0	0	0	1	0	1	0	0	1	0	1	0	0	0	0	1	$v_{bA1} - v_{cA1} + v_{aA3} - v_{cA3}$
Α	6 - 2 - 9	0	1	0	0	0	1	0	1	0	0	1	0	1	0	0	0	1	0	$v_{bA1} - v_{cA1} + v_{aA3} - v_{bA3}$
Α	6 - 3 - 1	0	1	0	0	0	1	1	0	0	1	0	0	0	0	1	0	0	1	$v_{bA1} - v_{cA1}$
Α	6 - 3 - 2	0	1	0	0	0	1	1	0	0	1	0	0	0	1	0	0	1	0	$v_{bA1} - v_{cA1}$
Α	6 - 3 - 3	0	1	0	0	0	1	1	0	0	1	0	0	1	0	0	1	0	0	$v_{bA1} - v_{cA1}$
Α	6 - 3 - 4	0	1	0	0	0	1	1	0	0	1	0	0	0	0	1	0	1	0	$v_{bA1} - v_{cA1} + v_{cA3} - v_{bA3}$
Α	6 - 3 - 5	0	1	0	0	0	1	1	0	0	1	0	0	0	0	1	1	0	0	$v_{bA1} - v_{cA1} + v_{cA3} - v_{aA3}$
Α	6 - 3 - 6	0	1	0	0	0	1	1	0	0	1	0	0	0	1	0	0	0	1	$v_{bA1} - v_{cA1} + v_{bA3} - v_{cA3}$
Α	6 - 3 - 7	0	1	0	0	0	1	1	0	0	1	0	0	0	1	0	1	0	0	$v_{bA1} - v_{cA1} + v_{bA3} - v_{aA3}$
Α	6 - 3 - 8	0	1	0	0	0	1	1	0	0	1	0	0	1	0	0	0	0	1	$v_{bA1} - v_{cA1} + v_{aA3} - v_{cA3}$
А	6 - 3 - 9	0	1	0	0	0	1	1	0	0	1	0	0	1	0	0	0	1	0	$v_{bA1} - v_{cA1} + v_{aA3} - v_{bA3}$

Tabla 31: Estados válidos de conmutación de cada convertidor matricial 3x1

				A_1						A_2						A_3				
Fase	Est. conmut.	S_1	S_2	S_3	S_4	S_5	S_6	S_1	S_2	S_3	S_4	S_5	S_6	S_1	S_2	S_3	S_4	S_5	S_6	v_{xn}
Α	6 - 4 - 1	0	1	0	0	0	1	0	0	1	0	1	0	0	0	1	0	0	1	$v_{bA1} - v_{cA1} + v_{cA2} - v_{bA2}$
Α	6 - 4 - 2	0	1	0	0	0	1	0	0	1	0	1	0	0	1	0	0	1	0	$v_{bA1} - v_{cA1} + v_{cA2} - v_{bA2}$
Α	6 - 4 - 3	0	1	0	0	0	1	0	0	1	0	1	0	1	0	0	1	0	0	$v_{bA1} - v_{cA1} + v_{cA2} - v_{bA2}$
Α	6 - 4 - 4	0	1	0	0	0	1	0	0	1	0	1	0	0	0	1	0	1	0	$v_{bA1} - v_{cA1} + v_{cA2} - v_{bA2} + v_{cA3} - v_{bA3}$
Α	6 - 4 - 5	0	1	0	0	0	1	0	0	1	0	1	0	0	0	1	1	0	0	$v_{bA1} - v_{cA1} + v_{cA2} - v_{bA2} + v_{cA3} - v_{aA3}$
Α	6 - 4 - 6	0	1	0	0	0	1	0	0	1	0	1	0	0	1	0	0	0	1	$v_{bA1} - v_{cA1} + v_{cA2} - v_{bA2} + v_{bA3} - v_{cA3}$
Α	6 - 4 - 7	0	1	0	0	0	1	0	0	1	0	1	0	0	1	0	1	0	0	$v_{bA1} - v_{cA1} + v_{cA2} - v_{bA2} + v_{bA3} - v_{aA3}$
Α	6 - 4 - 8	0	1	0	0	0	1	0	0	1	0	1	0	1	0	0	0	0	1	$v_{bA1} - v_{cA1} + v_{cA2} - v_{bA2} + v_{aA3} - v_{cA3}$
Α	6 - 4 - 9	0	1	0	0	0	1	0	0	1	0	1	0	1	0	0	0	1	0	$v_{bA1} - v_{cA1} + v_{cA2} - v_{bA2} + v_{aA3} - v_{bA3}$
Α	6 - 5 - 1	0	1	0	0	0	1	0	0	1	1	0	0	0	0	1	0	0	1	$v_{bA1} - v_{cA1} + v_{cA2} - v_{aA2}$
Α	6 - 5 - 2	0	1	0	0	0	1	0	0	1	1	0	0	0	1	0	0	1	0	$v_{bA1} - v_{cA1} + v_{cA2} - v_{aA2}$
Α	6 - 5 - 3	0	1	0	0	0	1	0	0	1	1	0	0	1	0	0	1	0	0	$v_{bA1} - v_{cA1} + v_{cA2} - v_{aA2}$
Α	6 - 5 - 4	0	1	0	0	0	1	0	0	1	1	0	0	0	0	1	0	1	0	$v_{bA1} - v_{cA1} + v_{cA2} - v_{aA2} + v_{cA3} - v_{bA3}$
Α	6 - 5 - 5	0	1	0	0	0	1	0	0	1	1	0	0	0	0	1	1	0	0	$v_{bA1} - v_{cA1} + v_{cA2} - v_{aA2} + v_{cA3} - v_{aA3}$
Α	6 - 5 - 6	0	1	0	0	0	1	0	0	1	1	0	0	0	1	0	0	0	1	$v_{bA1} - v_{cA1} + v_{cA2} - v_{aA2} + v_{bA3} - v_{cA3}$
Α	6 - 5 - 7	0	1	0	0	0	1	0	0	1	1	0	0	0	1	0	1	0	0	$v_{bA1} - v_{cA1} + v_{cA2} - v_{aA2} + v_{bA3} - v_{aA3}$
Α	6 - 5 - 8	0	1	0	0	0	1	0	0	1	1	0	0	1	0	0	0	0	1	$v_{bA1} - v_{cA1} + v_{cA2} - v_{aA2} + v_{aA3} - v_{cA3}$
Α	6 - 5 - 9	0	1	0	0	0	1	0	0	1	1	0	0	1	0	0	0	1	0	$v_{bA1} - v_{cA1} + v_{cA2} - v_{aA2} + v_{aA3} - v_{bA3}$
Α	6 - 6 - 1	0	1	0	0	0	1	0	1	0	0	0	1	0	0	1	0	0	1	$v_{bA1} - v_{cA1} + v_{bA2} - v_{cA2}$
Α	6 - 6 - 2	0	1	0	0	0	1	0	1	0	0	0	1	0	1	0	0	1	0	$v_{bA1} - v_{cA1} + v_{bA2} - v_{cA2}$
Α	6 - 6 - 3	0	1	0	0	0	1	0	1	0	0	0	1	1	0	0	1	0	0	$v_{bA1} - v_{cA1} + v_{bA2} - v_{cA2}$
Α	6 - 6 - 4	0	1	0	0	0	1	0	1	0	0	0	1	0	0	1	0	1	0	$v_{bA1} - v_{cA1} + v_{bA2} - v_{cA2} + v_{cA3} - v_{bA3}$
Α	6 - 6 - 5	0	1	0	0	0	1	0	1	0	0	0	1	0	0	1	1	0	0	$v_{bA1} - v_{cA1} + v_{bA2} - v_{cA2} + v_{cA3} - v_{aA3}$
Α	6 - 6 - 6	0	1	0	0	0	1	0	1	0	0	0	1	0	1	0	0	0	1	$v_{bA1} - v_{cA1} + v_{bA2} - v_{cA2} + v_{bA3} - v_{cA3}$
А	6 - 6 - 7	0	1	0	0	0	1	0	1	0	0	0	1	0	1	0	1	0	0	$v_{bA1} - v_{cA1} + v_{bA2} - v_{cA2} + v_{bA3} - v_{aA3}$
А	6 - 6 - 8	0	1	0	0	0	1	0	1	0	0	0	1	1	0	0	0	0	1	$v_{bA1} - v_{cA1} + v_{bA2} - v_{cA2} + v_{aA3} - v_{cA3}$
А	6 - 6 - 9	0	1	0	0	0	1	0	1	0	0	0	1	1	0	0	0	1	0	$v_{bA1} - v_{cA1} + v_{bA2} - v_{cA2} + v_{aA2} - v_{bA2}$

Tabla 32: Estados válidos de conmutación de cada convertidor matricial 3x1

				A_1						A_2						A_3				
Fase	Est. conmut.	S_1	S_2	S_3	S_4	S_5	S_6	S_1	S_2	S_3	S_4	S_5	S_6	S_1	S_2	S_3	S_4	S_5	S_6	v_{xn}
А	6 - 7 - 1	0	1	0	0	0	1	0	1	0	1	0	0	0	0	1	0	0	1	$v_{bA1} - v_{cA1} + v_{bA2} - v_{aA2}$
А	6 - 7 - 2	0	1	0	0	0	1	0	1	0	1	0	0	0	1	0	0	1	0	$v_{bA1} - v_{cA1} + v_{bA2} - v_{aA2}$
А	6 - 7 - 3	0	1	0	0	0	1	0	1	0	1	0	0	1	0	0	1	0	0	$v_{bA1} - v_{cA1} + v_{bA2} - v_{aA2}$
А	6 - 7 - 4	0	1	0	0	0	1	0	1	0	1	0	0	0	0	1	0	1	0	$v_{bA1} - v_{cA1} + v_{bA2} - v_{aA2} + v_{cA3} - v_{bA3}$
А	6 - 7 - 5	0	1	0	0	0	1	0	1	0	1	0	0	0	0	1	1	0	0	$v_{bA1} - v_{cA1} + v_{bA2} - v_{aA2} + v_{cA3} - v_{aA3}$
А	6 - 7 - 6	0	1	0	0	0	1	0	1	0	1	0	0	0	1	0	0	0	1	$v_{bA1} - v_{cA1} + v_{bA2} - v_{aA2} + v_{bA3} - v_{cA3}$
А	6 - 7 - 7	0	1	0	0	0	1	0	1	0	1	0	0	0	1	0	1	0	0	$v_{bA1} - v_{cA1} + v_{bA2} - v_{aA2} + v_{bA3} - v_{aA3}$
Α	6 - 7 - 8	0	1	0	0	0	1	0	1	0	1	0	0	1	0	0	0	0	1	$v_{bA1} - v_{cA1} + v_{bA2} - v_{aA2} + v_{aA3} - v_{cA3}$
Α	6 - 7 - 9	0	1	0	0	0	1	0	1	0	1	0	0	1	0	0	0	1	0	$v_{bA1} - v_{cA1} + v_{bA2} - v_{aA2} + v_{aA3} - v_{bA3}$
Α	6 - 8 - 1	0	1	0	0	0	1	1	0	0	0	0	1	0	0	1	0	0	1	$v_{bA1} - v_{cA1} + v_{aA2} - v_{cA2}$
Α	6 - 8 - 2	0	1	0	0	0	1	1	0	0	0	0	1	0	1	0	0	1	0	$v_{bA1} - v_{cA1} + v_{aA2} - v_{cA2}$
Α	6 - 8 - 3	0	1	0	0	0	1	1	0	0	0	0	1	1	0	0	1	0	0	$v_{bA1} - v_{cA1} + v_{aA2} - v_{cA2}$
Α	6 - 8 - 4	0	1	0	0	0	1	1	0	0	0	0	1	0	0	1	0	1	0	$v_{bA1} - v_{cA1} + v_{aA2} - v_{cA2} + v_{cA3} - v_{bA3}$
Α	6 - 8 - 5	0	1	0	0	0	1	1	0	0	0	0	1	0	0	1	1	0	0	$v_{bA1} - v_{cA1} + v_{aA2} - v_{cA2} + v_{cA3} - v_{aA3}$
Α	6 - 8 - 6	0	1	0	0	0	1	1	0	0	0	0	1	0	1	0	0	0	1	$v_{bA1} - v_{cA1} + v_{aA2} - v_{cA2} + v_{bA3} - v_{cA3}$
Α	6 - 8 - 7	0	1	0	0	0	1	1	0	0	0	0	1	0	1	0	1	0	0	$v_{bA1} - v_{cA1} + v_{aA2} - v_{cA2} + v_{bA3} - v_{aA3}$
Α	6 - 8 - 8	0	1	0	0	0	1	1	0	0	0	0	1	1	0	0	0	0	1	$v_{bA1} - v_{cA1} + v_{aA2} - v_{cA2} + v_{aA3} - v_{cA3}$
Α	6 - 8 - 9	0	1	0	0	0	1	1	0	0	0	0	1	1	0	0	0	1	0	$v_{bA1} - v_{cA1} + v_{aA2} - v_{cA2} + v_{aA3} - v_{bA3}$
Α	6 - 9 - 1	0	1	0	0	0	1	1	0	0	0	1	0	0	0	1	0	0	1	$v_{bA1} - v_{cA1} + v_{aA2} - v_{bA2}$
Α	6 - 9 - 2	0	1	0	0	0	1	1	0	0	0	1	0	0	1	0	0	1	0	$v_{bA1} - v_{cA1} + v_{aA2} - v_{bA2}$
Α	6 - 9 - 3	0	1	0	0	0	1	1	0	0	0	1	0	1	0	0	1	0	0	$v_{bA1} - v_{cA1} + v_{aA2} - v_{bA2}$
Α	6 - 9 - 4	0	1	0	0	0	1	1	0	0	0	1	0	0	0	1	0	1	0	$v_{bA1} - v_{cA1} + v_{aA2} - v_{bA2} + v_{cA3} - v_{bA3}$
Α	6 - 9 - 5	0	1	0	0	0	1	1	0	0	0	1	0	0	0	1	1	0	0	$v_{bA1} - v_{cA1} + v_{aA2} - v_{bA2} + v_{cA3} - v_{aA3}$
Α	6 - 9 - 6	0	1	0	0	0	1	1	0	0	0	1	0	0	1	0	0	0	1	$v_{bA1} - v_{cA1} + v_{aA2} - v_{bA2} + v_{bA3} - v_{cA3}$
Α	6 - 9 - 7	0	1	0	0	0	1	1	0	0	0	1	0	0	1	0	1	0	0	$v_{bA1} - v_{cA1} + v_{aA2} - v_{bA2} + v_{bA3} - v_{aA3}$
А	6 - 9 - 8	0	1	0	0	0	1	1	0	0	0	1	0	1	0	0	0	0	1	$v_{bA1} - v_{cA1} + v_{aA2} - v_{bA2} + v_{aA3} - v_{cA3}$
Α	6 - 9 - 9	0	1	0	0	0	1	1	0	0	0	1	0	1	0	0	0	1	0	$v_{bA1} - v_{cA1} + v_{aA2} - v_{bA2} + v_{aA3} - v_{bA3}$

Tabla 33: Estados válidos de conmutación de cada convertidor matricial 3x1

				A_1						A_2						A_3				
Fase	Est. conmut.	S_1	S_2	S_3	S_4	S_5	S_6	S_1	S_2	S_3	S_4	S_5	S_6	S_1	S_2	S_3	S_4	S_5	S_6	v_{xn}
Α	7 - 1 - 1	1	0	0	1	0	0	0	0	1	0	0	1	0	0	1	0	0	1	$v_{bA1} - v_{aA1}$
А	7 - 1 - 2	1	0	0	1	0	0	0	0	1	0	0	1	0	1	0	0	1	0	$v_{bA1} - v_{aA1}$
А	7 - 1 - 3	1	0	0	1	0	0	0	0	1	0	0	1	1	0	0	1	0	0	$v_{bA1} - v_{aA1}$
А	7 - 1 - 4	1	0	0	1	0	0	0	0	1	0	0	1	0	0	1	0	1	0	$v_{bA1} - v_{aA1} + v_{cA3} - v_{bA3}$
А	7 - 1 - 5	1	0	0	1	0	0	0	0	1	0	0	1	0	0	1	1	0	0	$v_{bA1} - v_{aA1} + v_{cA3} - v_{aA3}$
Α	7 - 1 - 6	1	0	0	1	0	0	0	0	1	0	0	1	0	1	0	0	0	1	$v_{bA1} - v_{aA1} + v_{bA3} - v_{cA3}$
А	7 - 1 - 7	1	0	0	1	0	0	0	0	1	0	0	1	0	1	0	1	0	0	$v_{bA1} - v_{aA1} + v_{bA3} - v_{aA3}$
Α	7 - 1 - 8	1	0	0	1	0	0	0	0	1	0	0	1	1	0	0	0	0	1	$v_{bA1} - v_{aA1} + v_{aA3} - v_{cA3}$
А	7 - 1 - 9	1	0	0	1	0	0	0	0	1	0	0	1	1	0	0	0	1	0	$v_{bA1} - v_{aA1} + v_{aA3} - v_{bA3}$
Α	7 - 2 - 1	1	0	0	1	0	0	0	1	0	0	1	0	0	0	1	0	0	1	$v_{bA1} - v_{aA1}$
Α	7 - 2 - 2	1	0	0	1	0	0	0	1	0	0	1	0	0	1	0	0	1	0	$v_{bA1} - v_{aA1}$
Α	7 - 2 - 3	1	0	0	1	0	0	0	1	0	0	1	0	1	0	0	1	0	0	$v_{bA1} - v_{aA1}$
Α	7 - 2 - 4	1	0	0	1	0	0	0	1	0	0	1	0	0	0	1	0	1	0	$v_{bA1} - v_{aA1} + v_{cA3} - v_{bA3}$
Α	7 - 2 - 5	1	0	0	1	0	0	0	1	0	0	1	0	0	0	1	1	0	0	$v_{bA1} - v_{aA1} + v_{cA3} - v_{aA3}$
Α	7 - 2 - 6	1	0	0	1	0	0	0	1	0	0	1	0	0	1	0	0	0	1	$v_{bA1} - v_{aA1} + v_{bA3} - v_{cA3}$
Α	7 - 2 - 7	1	0	0	1	0	0	0	1	0	0	1	0	0	1	0	1	0	0	$v_{bA1} - v_{aA1} + v_{bA3} - v_{aA3}$
Α	7 - 2 - 8	1	0	0	1	0	0	0	1	0	0	1	0	1	0	0	0	0	1	$v_{bA1} - v_{aA1} + v_{aA3} - v_{cA3}$
Α	7 - 2 - 9	1	0	0	1	0	0	0	1	0	0	1	0	1	0	0	0	1	0	$v_{bA1} - v_{aA1} + v_{aA3} - v_{bA3}$
Α	7 - 3 - 1	1	0	0	1	0	0	1	0	0	1	0	0	0	0	1	0	0	1	$v_{bA1} - v_{aA1}$
Α	7 - 3 - 2	1	0	0	1	0	0	1	0	0	1	0	0	0	1	0	0	1	0	$v_{bA1} - v_{aA1}$
Α	7 - 3 - 3	1	0	0	1	0	0	1	0	0	1	0	0	1	0	0	1	0	0	$v_{bA1} - v_{aA1}$
Α	7 - 3 - 4	1	0	0	1	0	0	1	0	0	1	0	0	0	0	1	0	1	0	$v_{bA1} - v_{aA1} + v_{cA3} - v_{bA3}$
Α	7 - 3 - 5	1	0	0	1	0	0	1	0	0	1	0	0	0	0	1	1	0	0	$v_{bA1} - v_{aA1} + v_{cA3} - v_{aA3}$
А	7 - 3 - 6	1	0	0	1	0	0	1	0	0	1	0	0	0	1	0	0	0	1	$v_{bA1} - v_{aA1} + v_{bA3} - v_{cA3}$
Α	7 - 3 - 7	1	0	0	1	0	0	1	0	0	1	0	0	0	1	0	1	0	0	$v_{bA1} - v_{aA1} + v_{bA3} - v_{aA3}$
А	7 - 3 - 8	1	0	0	1	0	0	1	0	0	1	0	0	1	0	0	0	0	1	$v_{bA1} - v_{aA1} + v_{aA3} - v_{cA3}$
А	7 - 3 - 9	1	0	0	1	0	0	1	0	0	1	0	0	1	0	0	0	1	0	$v_{bA1} - v_{aA1} + v_{aA3} - v_{bA3}$

Tabla 34: Estados válidos de conmutación de cada convertidor matricial 3x1

				A_1						A_2						A_3				
Fase	Est. conmut.	S_1	S_2	S_3	S_4	S_5	S_6	S_1	S_2	S_3	S_4	S_5	S_6	S_1	S_2	S_3	S_4	S_5	S_6	v _{xn}
А	7 - 4 - 1	1	0	0	1	0	0	0	0	1	0	1	0	0	0	1	0	0	1	$v_{bA1} - v_{aA1} + v_{cA2} - v_{bA2}$
Α	7 - 4 - 2	1	0	0	1	0	0	0	0	1	0	1	0	0	1	0	0	1	0	$v_{bA1} - v_{aA1} + v_{cA2} - v_{bA2}$
Α	7 - 4 - 3	1	0	0	1	0	0	0	0	1	0	1	0	1	0	0	1	0	0	$v_{bA1} - v_{aA1} + v_{cA2} - v_{bA2}$
Α	7 - 4 - 4	1	0	0	1	0	0	0	0	1	0	1	0	0	0	1	0	1	0	$v_{bA1} - v_{aA1} + v_{cA2} - v_{bA2} + v_{cA3} - v_{bA3}$
Α	7 - 4 - 5	1	0	0	1	0	0	0	0	1	0	1	0	0	0	1	1	0	0	$v_{bA1} - v_{aA1} + v_{cA2} - v_{bA2} + v_{cA3} - v_{aA3}$
Α	7 - 4 - 6	1	0	0	1	0	0	0	0	1	0	1	0	0	1	0	0	0	1	$v_{bA1} - v_{aA1} + v_{cA2} - v_{bA2} + v_{bA3} - v_{cA3}$
Α	7 - 4 - 7	1	0	0	1	0	0	0	0	1	0	1	0	0	1	0	1	0	0	$v_{bA1} - v_{aA1} + v_{cA2} - v_{bA2} + v_{bA3} - v_{aA3}$
Α	7 - 4 - 8	1	0	0	1	0	0	0	0	1	0	1	0	1	0	0	0	0	1	$v_{bA1} - v_{aA1} + v_{cA2} - v_{bA2} + v_{aA3} - v_{cA3}$
Α	7 - 4 - 9	1	0	0	1	0	0	0	0	1	0	1	0	1	0	0	0	1	0	$v_{bA1} - v_{aA1} + v_{cA2} - v_{bA2} + v_{aA3} - v_{bA3}$
Α	7 - 5 - 1	1	0	0	1	0	0	0	0	1	1	0	0	0	0	1	0	0	1	$v_{bA1} - v_{aA1} + v_{cA2} - v_{aA2}$
Α	7 - 5 - 2	1	0	0	1	0	0	0	0	1	1	0	0	0	1	0	0	1	0	$v_{bA1} - v_{aA1} + v_{cA2} - v_{aA2}$
Α	7 - 5 - 3	1	0	0	1	0	0	0	0	1	1	0	0	1	0	0	1	0	0	$v_{bA1} - v_{aA1} + v_{cA2} - v_{aA2} A$
7 - 5 - 4	1	0	0	1	0	0	0	0	1	1	0	0	0	0	1	0	1	0	$v_{bA1} - v_{aA1} + v_{cA2} - v_{aA2} + v_{cA3} - v_{bA3}$	
Α	7 - 5 - 5	1	0	0	1	0	0	0	0	1	1	0	0	0	0	1	1	0	0	$v_{bA1} - v_{aA1} + v_{cA2} - v_{aA2} + v_{cA3} - v_{aA3}$
Α	7 - 5 - 6	1	0	0	1	0	0	0	0	1	1	0	0	0	1	0	0	0	1	$v_{bA1} - v_{aA1} + v_{cA2} - v_{aA2} + v_{bA3} - v_{cA3}$
Α	7 - 5 - 7	1	0	0	1	0	0	0	0	1	1	0	0	0	1	0	1	0	0	$v_{bA1} - v_{aA1} + v_{cA2} - v_{aA2} + v_{bA3} - v_{aA3}$
Α	7 - 5 - 8	1	0	0	1	0	0	0	0	1	1	0	0	1	0	0	0	0	1	$v_{bA1} - v_{aA1} + v_{cA2} - v_{aA2} + v_{aA3} - v_{cA3}$
Α	7 - 5 - 9	1	0	0	1	0	0	0	0	1	1	0	0	1	0	0	0	1	0	$v_{bA1} - v_{aA1} + v_{cA2} - v_{aA2} + v_{aA3} - v_{bA3}$
Α	7 - 6 - 1	1	0	0	1	0	0	0	1	0	0	0	1	0	0	1	0	0	1	$v_{bA1} - v_{aA1} + v_{bA2} - v_{cA2}$
Α	7 - 6 - 2	1	0	0	1	0	0	0	1	0	0	0	1	0	1	0	0	1	0	$v_{bA1} - v_{aA1} + v_{bA2} - v_{cA2}$
Α	7 - 6 - 3	1	0	0	1	0	0	0	1	0	0	0	1	1	0	0	1	0	0	$v_{bA1} - v_{aA1} + v_{bA2} - v_{cA2}$
Α	7 - 6 - 4	1	0	0	1	0	0	0	1	0	0	0	1	0	0	1	0	1	0	$v_{bA1} - v_{aA1} + v_{bA2} - v_{cA2} + v_{cA3} - v_{bA3}$
Α	7 - 6 - 5	1	0	0	1	0	0	0	1	0	0	0	1	0	0	1	1	0	0	$v_{bA1} - v_{aA1} + v_{bA2} - v_{cA2} + v_{cA3} - v_{aA3}$
Α	7 - 6 - 6	1	0	0	1	0	0	0	1	0	0	0	1	0	1	0	0	0	1	$v_{bA1} - v_{aA1} + v_{bA2} - v_{cA2} + v_{bA3} - v_{cA3}$
Α	7 - 6 - 7	1	0	0	1	0	0	0	1	0	0	0	1	0	1	0	1	0	0	$v_{bA1} - v_{aA1} + v_{bA2} - v_{cA2} + v_{bA3} - v_{aA3}$
A	7 - 6 - 8	1	0	0	1	0	0	0	1	0	0	0	1	1	0	0	0	0	1	$v_{bA1} - v_{aA1} + v_{bA2} - v_{cA2} + v_{aA3} - v_{cA3}$
А	7 - 6 - 9	1	0	0	1	0	0	0	1	0	0	0	1	1	0	0	0	1	0	$v_{bA1} - v_{aA1} + v_{bA2} - v_{cA2} + v_{aA2} - v_{bA2}$

Tabla 35: Estados válidos de conmutación de cada convertidor matricial 3x1

				A_1						A_2						A_3				
Fase	Est. conmut.	S_1	S_2	S_3	S_4	S_5	S_6	S_1	S_2	S_3	S_4	S_5	S_6	S_1	S_2	S_3	S_4	S_5	S_6	v_{xn}
Α	7 - 7 - 1	1	0	0	1	0	0	0	1	0	1	0	0	0	0	1	0	0	1	$v_{bA1} - v_{aA1} + v_{bA2} - v_{aA2}$
А	7 - 7 - 2	1	0	0	1	0	0	0	1	0	1	0	0	0	1	0	0	1	0	$v_{bA1} - v_{aA1} + v_{bA2} - v_{aA2}$
А	7 - 7 - 3	1	0	0	1	0	0	0	1	0	1	0	0	1	0	0	1	0	0	$v_{bA1} - v_{aA1} + v_{bA2} - v_{aA2}$
А	7 - 7 - 4	1	0	0	1	0	0	0	1	0	1	0	0	0	0	1	0	1	0	$v_{bA1} - v_{aA1} + v_{bA2} - v_{aA2} + v_{cA3} - v_{bA3}$
А	7 - 7 - 5	1	0	0	1	0	0	0	1	0	1	0	0	0	0	1	1	0	0	$v_{bA1} - v_{aA1} + v_{bA2} - v_{aA2} + v_{cA3} - v_{aA3}$
А	7 - 7 - 6	1	0	0	1	0	0	0	1	0	1	0	0	0	1	0	0	0	1	$v_{bA1} - v_{aA1} + v_{bA2} - v_{aA2} + v_{bA3} - v_{cA3}$
А	7 - 7 - 7	1	0	0	1	0	0	0	1	0	1	0	0	0	1	0	1	0	0	$v_{bA1} - v_{aA1} + v_{bA2} - v_{aA2} + v_{bA3} - v_{aA3}$
А	7 - 7 - 8	1	0	0	1	0	0	0	1	0	1	0	0	1	0	0	0	0	1	$v_{bA1} - v_{aA1} + v_{bA2} - v_{aA2} + v_{aA3} - v_{cA3}$
А	7 - 7 - 9	1	0	0	1	0	0	0	1	0	1	0	0	1	0	0	0	1	0	$v_{bA1} - v_{aA1} + v_{bA2} - v_{aA2} + v_{aA3} - v_{bA3}$
А	7 - 8 - 1	1	0	0	1	0	0	1	0	0	0	0	1	0	0	1	0	0	1	$v_{bA1} - v_{aA1} + v_{aA2} - v_{cA2}$
А	7 - 8 - 2	1	0	0	1	0	0	1	0	0	0	0	1	0	1	0	0	1	0	$v_{bA1} - v_{aA1} + v_{aA2} - v_{cA2}$
А	7 - 8 - 3	1	0	0	1	0	0	1	0	0	0	0	1	1	0	0	1	0	0	$v_{bA1} - v_{aA1} + v_{aA2} - v_{cA2}$
А	7 - 8 - 4	1	0	0	1	0	0	1	0	0	0	0	1	0	0	1	0	1	0	$v_{bA1} - v_{aA1} + v_{aA2} - v_{cA2} + v_{cA3} - v_{bA3}$
А	7 - 8 - 5	1	0	0	1	0	0	1	0	0	0	0	1	0	0	1	1	0	0	$v_{bA1} - v_{aA1} + v_{aA2} - v_{cA2} + v_{cA3} - v_{aA3}$
А	7 - 8 - 6	1	0	0	1	0	0	1	0	0	0	0	1	0	1	0	0	0	1	$v_{bA1} - v_{aA1} + v_{aA2} - v_{cA2} + v_{bA3} - v_{cA3}$
А	7 - 8 - 7	1	0	0	1	0	0	1	0	0	0	0	1	0	1	0	1	0	0	$v_{bA1} - v_{aA1} + v_{aA2} - v_{cA2} + v_{bA3} - v_{aA3}$
А	7 - 8 - 8	1	0	0	1	0	0	1	0	0	0	0	1	1	0	0	0	0	1	$v_{bA1} - v_{aA1} + v_{aA2} - v_{cA2} + v_{aA3} - v_{cA3}$
А	7 - 8 - 9	1	0	0	1	0	0	1	0	0	0	0	1	1	0	0	0	1	0	$v_{bA1} - v_{aA1} + v_{aA2} - v_{cA2} + v_{aA3} - v_{bA3}$
А	7 - 9 - 1	1	0	0	1	0	0	1	0	0	0	1	0	0	0	1	0	0	1	$v_{bA1} - v_{aA1} + v_{aA2} - v_{bA2}$
А	7 - 9 - 2	1	0	0	1	0	0	1	0	0	0	1	0	0	1	0	0	1	0	$v_{bA1} - v_{aA1} + v_{aA2} - v_{bA2}$
А	7 - 9 - 3	1	0	0	1	0	0	1	0	0	0	1	0	1	0	0	1	0	0	$v_{bA1} - v_{aA1} + v_{aA2} - v_{bA2}$
А	7 - 9 - 4	1	0	0	1	0	0	1	0	0	0	1	0	0	0	1	0	1	0	$v_{bA1} - v_{aA1} + v_{aA2} - v_{bA2} + v_{cA3} - v_{bA3}$
А	7 - 9 - 5	1	0	0	1	0	0	1	0	0	0	1	0	0	0	1	1	0	0	$v_{bA1} - v_{aA1} + v_{aA2} - v_{bA2} + v_{cA3} - v_{aA3}$
А	7 - 9 - 6	1	0	0	1	0	0	1	0	0	0	1	0	0	1	0	0	0	1	$v_{bA1} - v_{aA1} + v_{aA2} - v_{bA2} + v_{bA3} - v_{cA3}$
A	7 - 9 - 7	1	0	0	1	0	0	1	0	0	0	1	0	0	1	0	1	0	0	$v_{bA1} - v_{aA1} + v_{aA2} - v_{bA2} + v_{bA3} - v_{aA3}$
А	7 - 9 - 8	1	0	0	1	0	0	1	0	0	0	1	0	1	0	0	0	0	1	$v_{bA1} - v_{aA1} + v_{aA2} - v_{bA2} + v_{aA3} - v_{cA3}$
А	7 - 9 - 9	1	0	0	1	0	0	1	0	0	0	1	0	1	0	0	0	1	0	$v_{bA1} - v_{aA1} + v_{aA2} - v_{bA2} + v_{aA3} - v_{bA3}$

Tabla 36: Estados válidos de conmutación de cada convertidor matricial 3x1

				A_1						A_2						A_3				
Fase	Est. conmut.	S_1	S_2	S_3	S_4	S_5	S_6	S_1	S_2	S_3	S_4	S_5	S_6	S_1	S_2	S_3	S_4	S_5	S_6	v_{xn}
Α	8 - 1 - 1	1	0	0	0	0	1	0	0	1	0	0	1	0	0	1	0	0	1	$v_{aA1} - v_{cA1}$
Α	8 - 1 - 2	1	0	0	0	0	1	0	0	1	0	0	1	0	1	0	0	1	0	$v_{aA1} - v_{cA1}$
Α	8 - 1 - 3	1	0	0	0	0	1	0	0	1	0	0	1	1	0	0	1	0	0	$v_{aA1} - v_{cA1}$
Α	8 - 1 - 4	1	0	0	0	0	1	0	0	1	0	0	1	0	0	1	0	1	0	$v_{aA1} - v_{cA1} + v_{cA3} - v_{bA3}$
Α	8 - 1 - 5	1	0	0	0	0	1	0	0	1	0	0	1	0	0	1	1	0	0	$v_{aA1} - v_{cA1} + v_{cA3} - v_{aA3}$
А	8 - 1 - 6	1	0	0	0	0	1	0	0	1	0	0	1	0	1	0	0	0	1	$v_{aA1} - v_{cA1} + v_{bA3} - v_{cA3}$
Α	8 - 1 - 7	1	0	0	0	0	1	0	0	1	0	0	1	0	1	0	1	0	0	$v_{aA1} - v_{cA1} + v_{bA3} - v_{aA3}$
А	8 - 1 - 8	1	0	0	0	0	1	0	0	1	0	0	1	1	0	0	0	0	1	$v_{aA1} - v_{cA1} + v_{aA3} - v_{cA3}$
А	8 - 1 - 9	1	0	0	0	0	1	0	0	1	0	0	1	1	0	0	0	1	0	$v_{aA1} - v_{cA1} + v_{aA3} - v_{bA3}$
А	8 - 2 - 1	1	0	0	0	0	1	0	1	0	0	1	0	0	0	1	0	0	1	$v_{aA1} - v_{cA1}$
Α	8 - 2 - 2	1	0	0	0	0	1	0	1	0	0	1	0	0	1	0	0	1	0	$v_{aA1} - v_{cA1}$
А	8 - 2 - 3	1	0	0	0	0	1	0	1	0	0	1	0	1	0	0	1	0	0	$v_{aA1} - v_{cA1}$
Α	8 - 2 - 4	1	0	0	0	0	1	0	1	0	0	1	0	0	0	1	0	1	0	$v_{aA1} - v_{cA1} + v_{cA3} - v_{bA3}$
Α	8 - 2 - 5	1	0	0	0	0	1	0	1	0	0	1	0	0	0	1	1	0	0	$v_{aA1} - v_{cA1} + v_{cA3} - v_{aA3}$
Α	8 - 2 - 6	1	0	0	0	0	1	0	1	0	0	1	0	0	1	0	0	0	1	$v_{aA1} - v_{cA1} + v_{bA3} - v_{cA3}$
Α	8 - 2 - 7	1	0	0	0	0	1	0	1	0	0	1	0	0	1	0	1	0	0	$v_{aA1} - v_{cA1} + v_{bA3} - v_{aA3}$
Α	8 - 2 - 8	1	0	0	0	0	1	0	1	0	0	1	0	1	0	0	0	0	1	$v_{aA1} - v_{cA1} + v_{aA3} - v_{cA3}$
Α	8 - 2 - 9	1	0	0	0	0	1	0	1	0	0	1	0	1	0	0	0	1	0	$v_{aA1} - v_{cA1} + v_{aA3} - v_{bA3}$
А	8 - 3 - 1	1	0	0	0	0	1	1	0	0	1	0	0	0	0	1	0	0	1	$v_{aA1} - v_{cA1}$
Α	8 - 3 - 2	1	0	0	0	0	1	1	0	0	1	0	0	0	1	0	0	1	0	$v_{aA1} - v_{cA1}$
Α	8 - 3 - 3	1	0	0	0	0	1	1	0	0	1	0	0	1	0	0	1	0	0	$v_{aA1} - v_{cA1}$
Α	8 - 3 - 4	1	0	0	0	0	1	1	0	0	1	0	0	0	0	1	0	1	0	$v_{aA1} - v_{cA1} + v_{cA3} - v_{bA3}$
А	8 - 3 - 5	1	0	0	0	0	1	1	0	0	1	0	0	0	0	1	1	0	0	$v_{aA1} - v_{cA1} + v_{cA3} - v_{aA3}$
А	8 - 3 - 6	1	0	0	0	0	1	1	0	0	1	0	0	0	1	0	0	0	1	$v_{aA1} - v_{cA1} + v_{bA3} - v_{cA3}$
А	8 - 3 - 7	1	0	0	0	0	1	1	0	0	1	0	0	0	1	0	1	0	0	$v_{aA1} - v_{cA1} + v_{bA3} - v_{aA3}$
А	8 - 3 - 8	1	0	0	0	0	1	1	0	0	1	0	0	1	0	0	0	0	1	$v_{aA1} - v_{cA1} + v_{aA3} - v_{cA3}$
А	8 - 3 - 9	1	0	0	0	0	1	1	0	0	1	0	0	1	0	0	0	1	0	$v_{aA1} - v_{cA1} + v_{aA3} - v_{bA3}$

Tabla 37: Estados válidos de conmutación de cada convertidor matricial 3x1

				A_1						A_2						A_3				
Fase	Est. conmut.	S_1	S_2	S_3	S_4	S_5	S_6	S_1	S_2	S_3	S_4	S_5	S_6	S_1	S_2	S_3	S_4	S_5	S_6	v_{xn}
А	8 - 4 - 1	1	0	0	0	0	1	0	0	1	0	1	0	0	0	1	0	0	1	$v_{aA1} - v_{cA1} + v_{cA2} - v_{bA2}$
Α	8 - 4 - 2	1	0	0	0	0	1	0	0	1	0	1	0	0	1	0	0	1	0	$v_{aA1} - v_{cA1} + v_{cA2} - v_{bA2}$
Α	8 - 4 - 3	1	0	0	0	0	1	0	0	1	0	1	0	1	0	0	1	0	0	$v_{aA1} - v_{cA1} + v_{cA2} - v_{bA2}$
Α	8 - 4 - 4	1	0	0	0	0	1	0	0	1	0	1	0	0	0	1	0	1	0	$v_{aA1} - v_{cA1} + v_{cA2} - v_{bA2} + v_{cA3} - v_{bA3}$
Α	8 - 4 - 5	1	0	0	0	0	1	0	0	1	0	1	0	0	0	1	1	0	0	$v_{aA1} - v_{cA1} + v_{cA2} - v_{bA2} + v_{cA3} - v_{aA3}$
Α	8 - 4 - 6	1	0	0	0	0	1	0	0	1	0	1	0	0	1	0	0	0	1	$v_{aA1} - v_{cA1} + v_{cA2} - v_{bA2} + v_{bA3} - v_{cA3}$
Α	8 - 4 - 7	1	0	0	0	0	1	0	0	1	0	1	0	0	1	0	1	0	0	$v_{aA1} - v_{cA1} + v_{cA2} - v_{bA2} + v_{bA3} - v_{aA3}$
Α	8 - 4 - 8	1	0	0	0	0	1	0	0	1	0	1	0	1	0	0	0	0	1	$v_{aA1} - v_{cA1} + v_{cA2} - v_{bA2} + v_{aA3} - v_{cA3}$
Α	8 - 4 - 9	1	0	0	0	0	1	0	0	1	0	1	0	1	0	0	0	1	0	$v_{aA1} - v_{cA1} + v_{cA2} - v_{bA2} + v_{aA3} - v_{bA3}$
Α	8 - 5 - 1	1	0	0	0	0	1	0	0	1	1	0	0	0	0	1	0	0	1	$v_{aA1} - v_{cA1} + v_{cA2} - v_{aA2}$
А	8 - 5 - 2	1	0	0	0	0	1	0	0	1	1	0	0	0	1	0	0	1	0	$v_{aA1} - v_{cA1} + v_{cA2} - v_{aA2}$
А	8 - 5 - 3	1	0	0	0	0	1	0	0	1	1	0	0	1	0	0	1	0	0	$v_{aA1} - v_{cA1} + v_{cA2} - v_{aA2}$
А	8 - 5 - 4	1	0	0	0	0	1	0	0	1	1	0	0	0	0	1	0	1	0	$v_{aA1} - v_{cA1} + v_{cA2} - v_{aA2} + v_{cA3} - v_{bA3}$
А	8 - 5 - 5	1	0	0	0	0	1	0	0	1	1	0	0	0	0	1	1	0	0	$v_{aA1} - v_{cA1} + v_{cA2} - v_{aA2} + v_{cA3} - v_{aA3}$
А	8 - 5 - 6	1	0	0	0	0	1	0	0	1	1	0	0	0	1	0	0	0	1	$v_{aA1} - v_{cA1} + v_{cA2} - v_{aA2} + v_{bA3} - v_{cA3}$
А	8 - 5 - 7	1	0	0	0	0	1	0	0	1	1	0	0	0	1	0	1	0	0	$v_{aA1} - v_{cA1} + v_{cA2} - v_{aA2} + v_{bA3} - v_{aA3}$
А	8 - 5 - 8	1	0	0	0	0	1	0	0	1	1	0	0	1	0	0	0	0	1	$v_{aA1} - v_{cA1} + v_{cA2} - v_{aA2} + v_{aA3} - v_{cA3}$
А	8 - 5 - 9	1	0	0	0	0	1	0	0	1	1	0	0	1	0	0	0	1	0	$v_{aA1} - v_{cA1} + v_{cA2} - v_{aA2} + v_{aA3} - v_{bA3}$
А	8 - 6 - 1	1	0	0	0	0	1	0	1	0	0	0	1	0	0	1	0	0	1	$v_{aA1} - v_{cA1} + v_{bA2} - v_{cA2}$
А	8 - 6 - 2	1	0	0	0	0	1	0	1	0	0	0	1	0	1	0	0	1	0	$v_{aA1} - v_{cA1} + v_{bA2} - v_{cA2}$
А	8 - 6 - 3	1	0	0	0	0	1	0	1	0	0	0	1	1	0	0	1	0	0	$v_{aA1} - v_{cA1} + v_{bA2} - v_{cA2}$
А	8 - 6 - 4	1	0	0	0	0	1	0	1	0	0	0	1	0	0	1	0	1	0	$v_{aA1} - v_{cA1} + v_{bA2} - v_{cA2} + v_{cA3} - v_{bA3}$
Α	8 - 6 - 5	1	0	0	0	0	1	0	1	0	0	0	1	0	0	1	1	0	0	$v_{aA1} - v_{cA1} + v_{bA2} - v_{cA2} + v_{cA3} - v_{aA3}$
Α	8 - 6 - 6	1	0	0	0	0	1	0	1	0	0	0	1	0	1	0	0	0	1	$v_{aA1} - v_{cA1} + v_{bA2} - v_{cA2} + v_{bA3} - v_{cA3}$
А	8 - 6 - 7	1	0	0	0	0	1	0	1	0	0	0	1	0	1	0	1	0	0	$v_{aA1} - v_{cA1} + v_{bA2} - v_{cA2} + v_{bA3} - v_{aA3}$
А	8 - 6 - 8	1	0	0	0	0	1	0	1	0	0	0	1	1	0	0	0	0	1	$v_{aA1} - v_{cA1} + v_{bA2} - v_{cA2} + v_{aA3} - v_{cA3}$
А	8 - 6 - 9	1	0	0	0	0	1	0	1	0	0	0	1	1	0	0	0	1	0	$v_{aA1} - v_{cA1} + v_{bA2} - v_{cA2} + v_{aA2} - v_{bA2}$

Tabla 38: Estados válidos de conmutación de cada convertidor matricial 3x1

				A_1						A_2						A_3				
Fase	Est. conmut.	S_1	S_2	S_3	S_4	S_5	S_6	S_1	S_2	S_3	S_4	S_5	S_6	S_1	S_2	S_3	S_4	S_5	S_6	v_{xn}
А	8 - 7 - 1	1	0	0	0	0	1	0	1	0	1	0	0	0	0	1	0	0	1	$v_{aA1} - v_{cA1} + v_{bA2} - v_{aA2}$
Α	8 - 7 - 2	1	0	0	0	0	1	0	1	0	1	0	0	0	1	0	0	1	0	$v_{aA1} - v_{cA1} + v_{bA2} - v_{aA2}$
Α	8 - 7 - 3	1	0	0	0	0	1	0	1	0	1	0	0	1	0	0	1	0	0	$v_{aA1} - v_{cA1} + v_{bA2} - v_{aA2}$
Α	8 - 7 - 4	1	0	0	0	0	1	0	1	0	1	0	0	0	0	1	0	1	0	$v_{aA1} - v_{cA1} + v_{bA2} - v_{aA2} + v_{cA3} - v_{bA3}$
Α	8 - 7 - 5	1	0	0	0	0	1	0	1	0	1	0	0	0	0	1	1	0	0	$v_{aA1} - v_{cA1} + v_{bA2} - v_{aA2} + v_{cA3} - v_{aA3}$
А	8 - 7 - 6	1	0	0	0	0	1	0	1	0	1	0	0	0	1	0	0	0	1	$v_{aA1} - v_{cA1} + v_{bA2} - v_{aA2} + v_{bA3} - v_{cA3}$
А	8 - 7 - 7	1	0	0	0	0	1	0	1	0	1	0	0	0	1	0	1	0	0	$v_{aA1} - v_{cA1} + v_{bA2} - v_{aA2} + v_{bA3} - v_{aA3}$
А	8 - 7 - 8	1	0	0	0	0	1	0	1	0	1	0	0	1	0	0	0	0	1	$v_{aA1} - v_{cA1} + v_{bA2} - v_{aA2} + v_{aA3} - v_{cA3}$
А	8 - 7 - 9	1	0	0	0	0	1	0	1	0	1	0	0	1	0	0	0	1	0	$v_{aA1} - v_{cA1} + v_{bA2} - v_{aA2} + v_{aA3} - v_{bA3}$
А	8 - 8 - 1	1	0	0	0	0	1	1	0	0	0	0	1	0	0	1	0	0	1	$v_{aA1} - v_{cA1} + v_{aA2} - v_{cA2}$
А	8 - 8 - 2	1	0	0	0	0	1	1	0	0	0	0	1	0	1	0	0	1	0	$v_{aA1} - v_{cA1} + v_{aA2} - v_{cA2}$
А	8 - 8 - 3	1	0	0	0	0	1	1	0	0	0	0	1	1	0	0	1	0	0	$v_{aA1} - v_{cA1} + v_{aA2} - v_{cA2}$
А	8 - 8 - 4	1	0	0	0	0	1	1	0	0	0	0	1	0	0	1	0	1	0	$v_{aA1} - v_{cA1} + v_{aA2} - v_{cA2} + v_{cA3} - v_{bA3}$
А	8 - 8 - 5	1	0	0	0	0	1	1	0	0	0	0	1	0	0	1	1	0	0	$v_{aA1} - v_{cA1} + v_{aA2} - v_{cA2} + v_{cA3} - v_{aA3}$
А	8 - 8 - 6	1	0	0	0	0	1	1	0	0	0	0	1	0	1	0	0	0	1	$v_{aA1} - v_{cA1} + v_{aA2} - v_{cA2} + v_{bA3} - v_{cA3}$
А	8 - 8 - 7	1	0	0	0	0	1	1	0	0	0	0	1	0	1	0	1	0	0	$v_{aA1} - v_{cA1} + v_{aA2} - v_{cA2} + v_{bA3} - v_{aA3}$
А	8 - 8 - 8	1	0	0	0	0	1	1	0	0	0	0	1	1	0	0	0	0	1	$v_{aA1} - v_{cA1} + v_{aA2} - v_{cA2} + v_{aA3} - v_{cA3}$
А	8 - 8 - 9	1	0	0	0	0	1	1	0	0	0	0	1	1	0	0	0	1	0	$v_{aA1} - v_{cA1} + v_{aA2} - v_{cA2} + v_{aA3} - v_{bA3}$
Α	8 - 9 - 1	1	0	0	0	0	1	1	0	0	0	1	0	0	0	1	0	0	1	$v_{aA1} - v_{cA1} + v_{aA2} - v_{bA2}$
А	8 - 9 - 2	1	0	0	0	0	1	1	0	0	0	1	0	0	1	0	0	1	0	$v_{aA1} - v_{cA1} + v_{aA2} - v_{bA2}$
Α	8 - 9 - 3	1	0	0	0	0	1	1	0	0	0	1	0	1	0	0	1	0	0	$v_{aA1} - v_{cA1} + v_{aA2} - v_{bA2}$
Α	8 - 9 - 4	1	0	0	0	0	1	1	0	0	0	1	0	0	0	1	0	1	0	$v_{aA1} - v_{cA1} + v_{aA2} - v_{bA2} + v_{cA3} - v_{bA3}$
Α	8 - 9 - 5	1	0	0	0	0	1	1	0	0	0	1	0	0	0	1	1	0	0	$v_{aA1} - v_{cA1} + v_{aA2} - v_{bA2} + v_{cA3} - v_{aA3}$
Α	8 - 9 - 6	1	0	0	0	0	1	1	0	0	0	1	0	0	1	0	0	0	1	$v_{aA1} - v_{cA1} + v_{aA2} - v_{bA2} + v_{bA3} - v_{cA3}$
А	8 - 9 - 7	1	0	0	0	0	1	1	0	0	0	1	0	0	1	0	1	0	0	$v_{aA1} - v_{cA1} + v_{aA2} - v_{bA2} + v_{bA3} - v_{aA3}$
А	8 - 9 - 8	1	0	0	0	0	1	1	0	0	0	1	0	1	0	0	0	0	1	$v_{aA1} - v_{cA1} + v_{aA2} - v_{bA2} + v_{aA3} - v_{cA3}$
А	8 - 9 - 9	1	0	0	0	0	1	1	0	0	0	1	0	1	0	0	0	1	0	$v_{aA1} - v_{cA1} + v_{aA2} - v_{bA2} + v_{aA3} - v_{bA3}$

Tabla 39: Estados válidos de conmutación de cada convertidor matricial 3x1

				A_1						A_2						A_3				
Fase	Est. conmut.	S_1	S_2	S_3	S_4	S_5	S_6	S_1	S_2	S_3	S_4	S_5	S_6	S_1	S_2	S_3	S_4	S_5	S_6	v_{xn}
Α	9 - 1 - 1	1	0	0	0	1	0	0	0	1	0	0	1	0	0	1	0	0	1	$v_{aA1} - v_{bA1}$
Α	9 - 1 - 2	1	0	0	0	1	0	0	0	1	0	0	1	0	1	0	0	1	0	$v_{aA1} - v_{bA1}$
Α	9 - 1 - 3	1	0	0	0	1	0	0	0	1	0	0	1	1	0	0	1	0	0	$v_{aA1} - v_{bA1}$
Α	9 - 1 - 4	1	0	0	0	1	0	0	0	1	0	0	1	0	0	1	0	1	0	$v_{aA1} - v_{bA1} + v_{cA3} - v_{bA3}$
Α	9 - 1 - 5	1	0	0	0	1	0	0	0	1	0	0	1	0	0	1	1	0	0	$v_{aA1} - v_{bA1} + v_{cA3} - v_{aA3}$
А	9 - 1 - 6	1	0	0	0	1	0	0	0	1	0	0	1	0	1	0	0	0	1	$v_{aA1} - v_{bA1} + v_{bA3} - v_{cA3}$
Α	9 - 1 - 7	1	0	0	0	1	0	0	0	1	0	0	1	0	1	0	1	0	0	$v_{aA1} - v_{bA1} + v_{bA3} - v_{aA3}$
А	9 - 1 - 8	1	0	0	0	1	0	0	0	1	0	0	1	1	0	0	0	0	1	$v_{aA1} - v_{bA1} + v_{aA3} - v_{cA3}$
А	9 - 1 - 9	1	0	0	0	1	0	0	0	1	0	0	1	1	0	0	0	1	0	$v_{aA1} - v_{bA1} + v_{aA3} - v_{bA3}$
А	9 - 2 - 1	1	0	0	0	1	0	0	1	0	0	1	0	0	0	1	0	0	1	$v_{aA1} - v_{bA1}$
Α	9 - 2 - 2	1	0	0	0	1	0	0	1	0	0	1	0	0	1	0	0	1	0	$v_{aA1} - v_{bA1}$
А	9 - 2 - 3	1	0	0	0	1	0	0	1	0	0	1	0	1	0	0	1	0	0	$v_{aA1} - v_{bA1}$
Α	9 - 2 - 4	1	0	0	0	1	0	0	1	0	0	1	0	0	0	1	0	1	0	$v_{aA1} - v_{bA1} + v_{cA3} - v_{bA3}$
А	9 - 2 - 5	1	0	0	0	1	0	0	1	0	0	1	0	0	0	1	1	0	0	$v_{aA1} - v_{bA1} + v_{cA3} - v_{aA3}$
Α	9 - 2 - 6	1	0	0	0	1	0	0	1	0	0	1	0	0	1	0	0	0	1	$v_{aA1} - v_{bA1} + v_{bA3} - v_{cA3}$
А	9 - 2 - 7	1	0	0	0	1	0	0	1	0	0	1	0	0	1	0	1	0	0	$v_{aA1} - v_{bA1} + v_{bA3} - v_{aA3}$
Α	9 - 2 - 8	1	0	0	0	1	0	0	1	0	0	1	0	1	0	0	0	0	1	$v_{aA1} - v_{bA1} + v_{aA3} - v_{cA3}$
А	9 - 2 - 9	1	0	0	0	1	0	0	1	0	0	1	0	1	0	0	0	1	0	$v_{aA1} - v_{bA1} + v_{aA3} - v_{bA3}$
А	9 - 3 - 1	1	0	0	0	1	0	1	0	0	1	0	0	0	0	1	0	0	1	$v_{aA1} - v_{bA1}$
А	9 - 3 - 2	1	0	0	0	1	0	1	0	0	1	0	0	0	1	0	0	1	0	$v_{aA1} - v_{bA1}$
А	9 - 3 - 3	1	0	0	0	1	0	1	0	0	1	0	0	1	0	0	1	0	0	$v_{aA1} - v_{bA1}$
А	9 - 3 - 4	1	0	0	0	1	0	1	0	0	1	0	0	0	0	1	0	1	0	$v_{aA1} - v_{bA1} + v_{cA3} - v_{bA3}$
А	9 - 3 - 5	1	0	0	0	1	0	1	0	0	1	0	0	0	0	1	1	0	0	$v_{aA1} - v_{bA1} + v_{cA3} - v_{aA3}$
А	9 - 3 - 6	1	0	0	0	1	0	1	0	0	1	0	0	0	1	0	0	0	1	$v_{aA1} - v_{bA1} + v_{bA3} - v_{cA3}$
А	9 - 3 - 7	1	0	0	0	1	0	1	0	0	1	0	0	0	1	0	1	0	0	$v_{aA1} - v_{bA1} + v_{bA3} - v_{aA3}$
А	9 - 3 - 8	1	0	0	0	1	0	1	0	0	1	0	0	1	0	0	0	0	1	$v_{aA1} - v_{bA1} + v_{aA3} - v_{cA3}$
А	9 - 3 - 9	1	0	0	0	1	0	1	0	0	1	0	0	1	0	0	0	1	0	$v_{aA1} - v_{bA1} + v_{aA3} - v_{bA3}$

Tabla 40: Estados válidos de conmutación de cada convertidor matricial 3x1

				A_1						A_2						A_3				
Fase	Est. conmut.	S_1	S_2	S_3	S_4	S_5	S_6	S_1	S_2	S_3	S_4	S_5	S_6	S_1	S_2	S_3	S_4	S_5	S_6	v_{xn}
А	9 - 4 - 1	1	0	0	0	1	0	0	0	1	0	1	0	0	0	1	0	0	1	$v_{aA1} - v_{bA1} + v_{cA2} - v_{bA2}$
Α	9 - 4 - 2	1	0	0	0	1	0	0	0	1	0	1	0	0	1	0	0	1	0	$v_{aA1} - v_{bA1} + v_{cA2} - v_{bA2}$
Α	9 - 4 - 3	1	0	0	0	1	0	0	0	1	0	1	0	1	0	0	1	0	0	$v_{aA1} - v_{bA1} + v_{cA2} - v_{bA2}$
Α	9 - 4 - 4	1	0	0	0	1	0	0	0	1	0	1	0	0	0	1	0	1	0	$v_{aA1} - v_{bA1} + v_{cA2} - v_{bA2} + v_{cA3} - v_{bA3}$
Α	9 - 4 - 5	1	0	0	0	1	0	0	0	1	0	1	0	0	0	1	1	0	0	$v_{aA1} - v_{bA1} + v_{cA2} - v_{bA2} + v_{cA3} - v_{aA3}$
Α	9 - 4 - 6	1	0	0	0	1	0	0	0	1	0	1	0	0	1	0	0	0	1	$v_{aA1} - v_{bA1} + v_{cA2} - v_{bA2} + v_{bA3} - v_{cA3}$
Α	9 - 4 - 7	1	0	0	0	1	0	0	0	1	0	1	0	0	1	0	1	0	0	$v_{aA1} - v_{bA1} + v_{cA2} - v_{bA2} + v_{bA3} - v_{aA3}$
Α	9 - 4 - 8	1	0	0	0	1	0	0	0	1	0	1	0	1	0	0	0	0	1	$v_{aA1} - v_{bA1} + v_{cA2} - v_{bA2} + v_{aA3} - v_{cA3}$
Α	9 - 4 - 9	1	0	0	0	1	0	0	0	1	0	1	0	1	0	0	0	1	0	$v_{aA1} - v_{bA1} + v_{cA2} - v_{bA2} + v_{aA3} - v_{bA3}$
Α	9 - 5 - 1	1	0	0	0	1	0	0	0	1	1	0	0	0	0	1	0	0	1	$v_{aA1} - v_{bA1} + v_{cA2} - v_{aA2}$
Α	9 - 5 - 2	1	0	0	0	1	0	0	0	1	1	0	0	0	1	0	0	1	0	$v_{aA1} - v_{bA1} + v_{cA2} - v_{aA2}$
Α	9 - 5 - 3	1	0	0	0	1	0	0	0	1	1	0	0	1	0	0	1	0	0	$v_{aA1} - v_{bA1} + v_{cA2} - v_{aA2}$
Α	9 - 5 - 4	1	0	0	0	1	0	0	0	1	1	0	0	0	0	1	0	1	0	$v_{aA1} - v_{bA1} + v_{cA2} - v_{aA2} + v_{cA3} - v_{bA3}$
Α	9 - 5 - 5	1	0	0	0	1	0	0	0	1	1	0	0	0	0	1	1	0	0	$v_{aA1} - v_{bA1} + v_{cA2} - v_{aA2} + v_{cA3} - v_{aA3}$
Α	9 - 5 - 6	1	0	0	0	1	0	0	0	1	1	0	0	0	1	0	0	0	1	$v_{aA1} - v_{bA1} + v_{cA2} - v_{aA2} + v_{bA3} - v_{cA3}$
Α	9 - 5 - 7	1	0	0	0	1	0	0	0	1	1	0	0	0	1	0	1	0	0	$v_{aA1} - v_{bA1} + v_{cA2} - v_{aA2} + v_{bA3} - v_{aA3}$
Α	9 - 5 - 8	1	0	0	0	1	0	0	0	1	1	0	0	1	0	0	0	0	1	$v_{aA1} - v_{bA1} + v_{cA2} - v_{aA2} + v_{aA3} - v_{cA3}$
Α	9 - 5 - 9	1	0	0	0	1	0	0	0	1	1	0	0	1	0	0	0	1	0	$v_{aA1} - v_{bA1} + v_{cA2} - v_{aA2} + v_{aA3} - v_{bA3}$
Α	9 - 6 - 1	1	0	0	0	1	0	0	1	0	0	0	1	0	0	1	0	0	1	$v_{aA1} - v_{bA1} + v_{bA2} - v_{cA2}$
Α	9 - 6 - 2	1	0	0	0	1	0	0	1	0	0	0	1	0	1	0	0	1	0	$v_{aA1} - v_{bA1} + v_{bA2} - v_{cA2}$
Α	9 - 6 - 3	1	0	0	0	1	0	0	1	0	0	0	1	1	0	0	1	0	0	$v_{aA1} - v_{bA1} + v_{bA2} - v_{cA2}$
Α	9 - 6 - 4	1	0	0	0	1	0	0	1	0	0	0	1	0	0	1	0	1	0	$v_{aA1} - v_{bA1} + v_{bA2} - v_{cA2} + v_{cA3} - v_{bA3}$
Α	9 - 6 - 5	1	0	0	0	1	0	0	1	0	0	0	1	0	0	1	1	0	0	$v_{aA1} - v_{bA1} + v_{bA2} - v_{cA2} + v_{cA3} - v_{aA3}$
Α	9 - 6 - 6	1	0	0	0	1	0	0	1	0	0	0	1	0	1	0	0	0	1	$v_{aA1} - v_{bA1} + v_{bA2} - v_{cA2} + v_{bA3} - v_{cA3}$
Α	9 - 6 - 7	1	0	0	0	1	0	0	1	0	0	0	1	0	1	0	1	0	0	$v_{aA1} - v_{bA1} + v_{bA2} - v_{cA2} + v_{bA3} - v_{aA3}$
Α	9 - 6 - 8	1	0	0	0	1	0	0	1	0	0	0	1	1	0	0	0	0	1	$v_{aA1} - v_{bA1} + v_{bA2} - v_{cA2} + v_{aA3} - v_{cA3}$
А	9 - 6 - 9	1	0	0	0	1	0	0	1	0	0	0	1	1	0	0	0	1	0	$v_{aA1} - v_{bA1} + v_{bA2} - v_{cA2} + v_{aA2} - v_{bA2}$

Tabla 41: Estados válidos de conmutación de cada convertidor matricial 3x1

				A_1						A_2						A_3				
Fase	Est. conmut.	S_1	S_2	S_3	S_4	S_5	S_6	S_1	S_2	S_3	S_4	S_5	S_6	S_1	S_2	S_3	S_4	S_5	S_6	v_{xn}
А	9 - 7 - 1	1	0	0	0	1	0	0	1	0	1	0	0	0	0	1	0	0	1	$v_{aA1} - v_{bA1} + v_{bA2} - v_{aA2}$
А	9 - 7 - 2	1	0	0	0	1	0	0	1	0	1	0	0	0	1	0	0	1	0	$v_{aA1} - v_{bA1} + v_{bA2} - v_{aA2}$
А	9 - 7 - 3	1	0	0	0	1	0	0	1	0	1	0	0	1	0	0	1	0	0	$v_{aA1} - v_{bA1} + v_{bA2} - v_{aA2}$
А	9 - 7 - 4	1	0	0	0	1	0	0	1	0	1	0	0	0	0	1	0	1	0	$v_{aA1} - v_{bA1} + v_{bA2} - v_{aA2} + v_{cA3} - v_{bA3}$
А	9 - 7 - 5	1	0	0	0	1	0	0	1	0	1	0	0	0	0	1	1	0	0	$v_{aA1} - v_{bA1} + v_{bA2} - v_{aA2} + v_{cA3} - v_{aA3}$
А	9 - 7 - 6	1	0	0	0	1	0	0	1	0	1	0	0	0	1	0	0	0	1	$v_{aA1} - v_{bA1} + v_{bA2} - v_{aA2} + v_{bA3} - v_{cA3}$
А	9 - 7 - 7	1	0	0	0	1	0	0	1	0	1	0	0	0	1	0	1	0	0	$v_{aA1} - v_{bA1} + v_{bA2} - v_{aA2} + v_{bA3} - v_{aA3}$
А	9 - 7 - 8	1	0	0	0	1	0	0	1	0	1	0	0	1	0	0	0	0	1	$v_{aA1} - v_{bA1} + v_{bA2} - v_{aA2} + v_{aA3} - v_{cA3}$
А	9 - 7 - 9	1	0	0	0	1	0	0	1	0	1	0	0	1	0	0	0	1	0	$v_{aA1} - v_{bA1} + v_{bA2} - v_{aA2} + v_{aA3} - v_{bA3}$
Α	9 - 8 - 1	1	0	0	0	1	0	1	0	0	0	0	1	0	0	1	0	0	1	$v_{aA1} - v_{bA1} + v_{aA2} - v_{cA2}$
Α	9 - 8 - 2	1	0	0	0	1	0	1	0	0	0	0	1	0	1	0	0	1	0	$v_{aA1} - v_{bA1} + v_{aA2} - v_{cA2}$
Α	9 - 8 - 3	1	0	0	0	1	0	1	0	0	0	0	1	1	0	0	1	0	0	$v_{aA1} - v_{bA1} + v_{aA2} - v_{cA2}$
А	9 - 8 - 4	1	0	0	0	1	0	1	0	0	0	0	1	0	0	1	0	1	0	$v_{aA1} - v_{bA1} + v_{aA2} - v_{cA2} + v_{cA3} - v_{bA3}$
А	9 - 8 - 5	1	0	0	0	1	0	1	0	0	0	0	1	0	0	1	1	0	0	$v_{aA1} - v_{bA1} + v_{aA2} - v_{cA2} + v_{cA3} - v_{aA3}$
А	9 - 8 - 6	1	0	0	0	1	0	1	0	0	0	0	1	0	1	0	0	0	1	$v_{aA1} - v_{bA1} + v_{aA2} - v_{cA2} + v_{bA3} - v_{cA3}$
А	9 - 8 - 7	1	0	0	0	1	0	1	0	0	0	0	1	0	1	0	1	0	0	$v_{aA1} - v_{bA1} + v_{aA2} - v_{cA2} + v_{bA3} - v_{aA3}$
А	9 - 8 - 8	1	0	0	0	1	0	1	0	0	0	0	1	1	0	0	0	0	1	$v_{aA1} - v_{bA1} + v_{aA2} - v_{cA2} + v_{aA3} - v_{cA3}$
А	9 - 8 - 9	1	0	0	0	1	0	1	0	0	0	0	1	1	0	0	0	1	0	$v_{aA1} - v_{bA1} + v_{aA2} - v_{cA2} + v_{aA3} - v_{bA3}$
Α	9 - 9 - 1	1	0	0	0	1	0	1	0	0	0	1	0	0	0	1	0	0	1	$v_{aA1} - v_{bA1} + v_{aA2} - v_{bA2}$
Α	9 - 9 - 2	1	0	0	0	1	0	1	0	0	0	1	0	0	1	0	0	1	0	$v_{aA1} - v_{bA1} + v_{aA2} - v_{bA2}$
Α	9 - 9 - 3	1	0	0	0	1	0	1	0	0	0	1	0	1	0	0	1	0	0	$v_{aA1} - v_{bA1} + v_{aA2} - v_{bA2}$
А	9 - 9 - 4	1	0	0	0	1	0	1	0	0	0	1	0	0	0	1	0	1	0	$v_{aA1} - v_{bA1} + v_{aA2} - v_{bA2} + v_{cA3} - v_{bA3}$
А	9 - 9 - 5	1	0	0	0	1	0	1	0	0	0	1	0	0	0	1	1	0	0	$v_{aA1} - v_{bA1} + v_{aA2} - v_{bA2} + v_{cA3} - v_{aA3}$
Α	9 - 9 - 6	1	0	0	0	1	0	1	0	0	0	1	0	0	1	0	0	0	1	$v_{aA1} - v_{bA1} + v_{aA2} - v_{bA2} + v_{bA3} - v_{cA3}$
Α	9 - 9 - 7	1	0	0	0	1	0	1	0	0	0	1	0	0	1	0	1	0	0	$v_{aA1} - v_{bA1} + v_{aA2} - v_{bA2} + v_{bA3} - v_{aA3}$
Α	9 - 9 - 8	1	0	0	0	1	0	1	0	0	0	1	0	1	0	0	0	0	1	$v_{aA1} - v_{bA1} + v_{aA2} - v_{bA2} + v_{aA3} - v_{cA3}$
А	9 - 9 - 9	1	0	0	0	1	0	1	0	0	0	1	0	1	0	0	0	1	0	$v_{aA1} - v_{bA1} + v_{aA2} - v_{bA2} + v_{aA3} - v_{bA3}$

Tabla 42: Estados válidos de conmutación de cada convertidor matricial 3x1

				B_1						B_2						B_3				
Fase	Est. conmut.	S_1	S_2	S_3	S_4	S_5	S_6	S_1	S_2	S_3	S_4	S_5	S_6	S_1	S_2	S_3	S_4	S_5	S_6	v_{xn}
В	1 - 1 - 1	0	0	1	0	0	1	0	0	1	0	0	1	0	0	1	0	0	1	0
В	1 - 1 - 2	0	0	1	0	0	1	0	0	1	0	0	1	0	1	0	0	1	0	0
В	1 - 1 - 3	0	0	1	0	0	1	0	0	1	0	0	1	1	0	0	1	0	0	0
В	1 - 1 - 4	0	0	1	0	0	1	0	0	1	0	0	1	0	0	1	0	1	0	$v_{cB3} - v_{bB3}$
В	1 - 1 - 5	0	0	1	0	0	1	0	0	1	0	0	1	0	0	1	1	0	0	$v_{cB3} - v_{aB3}$
В	1 - 1 - 6	0	0	1	0	0	1	0	0	1	0	0	1	0	1	0	0	0	1	$v_{bB3} - v_{cB3}$
В	1 - 1 - 7	0	0	1	0	0	1	0	0	1	0	0	1	0	1	0	1	0	0	$v_{bB3} - v_{aB3}$
В	1 - 1 - 8	0	0	1	0	0	1	0	0	1	0	0	1	1	0	0	0	0	1	$v_{aB3} - v_{cB3}$
В	1 - 1 - 9	0	0	1	0	0	1	0	0	1	0	0	1	1	0	0	0	1	0	$v_{aB3} - v_{bB3}$
В	1 - 2 - 1	0	0	1	0	0	1	0	1	0	0	1	0	0	0	1	0	0	1	0
В	1 - 2 - 2	0	0	1	0	0	1	0	1	0	0	1	0	0	1	0	0	1	0	0
В	1 - 2 - 3	0	0	1	0	0	1	0	1	0	0	1	0	1	0	0	1	0	0	0
В	1 - 2 - 4	0	0	1	0	0	1	0	1	0	0	1	0	0	0	1	0	1	0	$v_{cB3} - v_{bB3}$
В	1 - 2 - 5	0	0	1	0	0	1	0	1	0	0	1	0	0	0	1	1	0	0	$v_{cB3} - v_{aB3}$
В	1 - 2 - 6	0	0	1	0	0	1	0	1	0	0	1	0	0	1	0	0	0	1	$v_{bB3} - v_{cB3}$
В	1 - 2 - 7	0	0	1	0	0	1	0	1	0	0	1	0	0	1	0	1	0	0	$v_{bB3} - v_{aB3}$
В	1 - 2 - 8	0	0	1	0	0	1	0	1	0	0	1	0	1	0	0	0	0	1	$v_{aB3} - v_{cB3}$
В	1 - 2 - 9	0	0	1	0	0	1	0	1	0	0	1	0	1	0	0	0	1	0	$v_{aB3} - v_{bB3}$
В	1 - 3 - 1	0	0	1	0	0	1	1	0	0	1	0	0	0	0	1	0	0	1	0
В	1 - 3 - 2	0	0	1	0	0	1	1	0	0	1	0	0	0	1	0	0	1	0	0
В	1 - 3 - 3	0	0	1	0	0	1	1	0	0	1	0	0	1	0	0	1	0	0	0
В	1 - 3 - 4	0	0	1	0	0	1	1	0	0	1	0	0	0	0	1	0	1	0	$v_{cB3} - v_{bB3}$
В	1 - 3 - 5	0	0	1	0	0	1	1	0	0	1	0	0	0	0	1	1	0	0	$v_{cB3} - v_{aB3}$
В	1 - 3 - 6	0	0	1	0	0	1	1	0	0	1	0	0	0	1	0	0	0	1	$v_{bB3} - v_{cB3}$
В	1 - 3 - 7	0	0	1	0	0	1	1	0	0	1	0	0	0	1	0	1	0	0	$v_{bB3} - v_{aB3}$
В	1 - 3 - 8	0	0	1	0	0	1	1	0	0	1	0	0	1	0	0	0	0	1	$v_{aB3} - v_{cB3}$
В	1 - 3 - 9	0	0	1	0	0	1	1	0	0	1	0	0	1	0	0	0	1	0	$v_{aB3} - v_{bB3}$

Tabla 43: Estados válidos de conmutación de cada convertidor matricial $3\mathrm{x}1$

				B_1						B_2						B_3				L
Fase	Est. conmut.	S_1	S_2	S_3	S_4	S_5	S_6	S_1	S_2	S_3	S_4	S_5	S_6	S_1	S_2	S_3	S_4	S_5	S_6	v_{xn}
В	1 - 4 - 1	0	0	1	0	0	1	0	0	1	0	1	0	0	0	1	0	0	1	$v_{cB2} - v_{bB2}$
В	1 - 4 - 2	0	0	1	0	0	1	0	0	1	0	1	0	0	1	0	0	1	0	$v_{cB2} - v_{bB2}$
В	1 - 4 - 3	0	0	1	0	0	1	0	0	1	0	1	0	1	0	0	1	0	0	$v_{cB2} - v_{bB2}$
В	1 - 4 - 4	0	0	1	0	0	1	0	0	1	0	1	0	0	0	1	0	1	0	$v_{cB2} - v_{bB2} + v_{cB3} - v_{bB3}$
В	1 - 4 - 5	0	0	1	0	0	1	0	0	1	0	1	0	0	0	1	1	0	0	$v_{cB2} - v_{bB2} + v_{cB3} - v_{aB3}$
В	1 - 4 - 6	0	0	1	0	0	1	0	0	1	0	1	0	0	1	0	0	0	1	$v_{cB2} - v_{bB2} + v_{bB3} - v_{cB3}$
В	1 - 4 - 7	0	0	1	0	0	1	0	0	1	0	1	0	0	1	0	1	0	0	$v_{cB2} - v_{bB2} + v_{bB3} - v_{aB3}$
В	1 - 4 - 8	0	0	1	0	0	1	0	0	1	0	1	0	1	0	0	0	0	1	$v_{cB2} - v_{bB2} + v_{aB3} - v_{cB3}$
В	1 - 4 - 9	0	0	1	0	0	1	0	0	1	0	1	0	1	0	0	0	1	0	$v_{cB2} - v_{bB2} + v_{aB3} - v_{bB3}$
В	1 - 5 - 1	0	0	1	0	0	1	0	0	1	1	0	0	0	0	1	0	0	1	$v_{cB2} - v_{aB2}$
В	1 - 5 - 2	0	0	1	0	0	1	0	0	1	1	0	0	0	1	0	0	1	0	$v_{cB2} - v_{aB2}$
В	1 - 5 - 3	0	0	1	0	0	1	0	0	1	1	0	0	1	0	0	1	0	0	$v_{cB2} - v_{aB2}$
В	1 - 5 - 4	0	0	1	0	0	1	0	0	1	1	0	0	0	0	1	0	1	0	$v_{cB2} - v_{aB2} + v_{cB3} - v_{bB3}$
В	1 - 5 - 5	0	0	1	0	0	1	0	0	1	1	0	0	0	0	1	1	0	0	$v_{cB2} - v_{aB2} + v_{cB3} - v_{aB3}$
В	1 - 5 - 6	0	0	1	0	0	1	0	0	1	1	0	0	0	1	0	0	0	1	$v_{cB2} - v_{aB2} + v_{bB3} - v_{cB3}$
В	1 - 5 - 7	0	0	1	0	0	1	0	0	1	1	0	0	0	1	0	1	0	0	$v_{cB2} - v_{aB2} + v_{bB3} - v_{aB3}$
В	1 - 5 - 8	0	0	1	0	0	1	0	0	1	1	0	0	1	0	0	0	0	1	$v_{cB2} - v_{aB2} + v_{aB3} - v_{cB3}$
В	1 - 5 - 9	0	0	1	0	0	1	0	0	1	1	0	0	1	0	0	0	1	0	$v_{cB2} - v_{aB2} + v_{aB3} - v_{bB3}$
В	1 - 6 - 1	0	0	1	0	0	1	0	1	0	0	0	1	0	0	1	0	0	1	$v_{bB2} - v_{cB2}$
В	1 - 6 - 2	0	0	1	0	0	1	0	1	0	0	0	1	0	1	0	0	1	0	$v_{bB2} - v_{cB2}$
В	1 - 6 - 3	0	0	1	0	0	1	0	1	0	0	0	1	1	0	0	1	0	0	$v_{bB2} - v_{cB2}$
В	1 - 6 - 4	0	0	1	0	0	1	0	1	0	0	0	1	0	0	1	0	1	0	$v_{bB2} - v_{cB2} + v_{cB3} - v_{bB3}$
В	1 - 6 - 5	0	0	1	0	0	1	0	1	0	0	0	1	0	0	1	1	0	0	$v_{bB2} - v_{cB2} + v_{cB3} - v_{aB3}$
В	1 - 6 - 6	0	0	1	0	0	1	0	1	0	0	0	1	0	1	0	0	0	1	$v_{bB2} - v_{cB2} + v_{bB3} - v_{cB3}$
В	1 - 6 - 7	0	0	1	0	0	1	0	1	0	0	0	1	0	1	0	1	0	0	$v_{bB2} - v_{cB2} + v_{bB3} - v_{aB3}$
В	1 - 6 - 8	0	0	1	0	0	1	0	1	0	0	0	1	1	0	0	0	0	1	$v_{bB2} - v_{cB2} + v_{aB3} - v_{cB3}$
В	1 - 6 - 9	0	0	1	0	0	1	0	1	0	0	0	1	1	0	0	0	1	0	$v_{bB2} - v_{cB2} + v_{aB2} - v_{bB2}$

Tabla 44: Estados válidos de conmutación de cada convertidor matricial 3x1

				B_1						B_2						B_3				L
Fase	Est. conmut.	S_1	S_2	S_3	S_4	S_5	S_6	S_1	S_2	S_3	S_4	S_5	S_6	S_1	S_2	S_3	S_4	S_5	S_6	v_{xn}
В	1 - 7 - 1	0	0	1	0	0	1	0	1	0	1	0	0	0	0	1	0	0	1	$v_{bB2} - v_{aB2}$
В	1 - 7 - 2	0	0	1	0	0	1	0	1	0	1	0	0	0	1	0	0	1	0	$v_{bB2} - v_{aB2}$
В	1 - 7 - 3	0	0	1	0	0	1	0	1	0	1	0	0	1	0	0	1	0	0	$v_{bB2} - v_{aB2}$
В	1 - 7 - 4	0	0	1	0	0	1	0	1	0	1	0	0	0	0	1	0	1	0	$v_{bB2} - v_{aB2} + v_{cB3} - v_{bB3}$
В	1 - 7 - 5	0	0	1	0	0	1	0	1	0	1	0	0	0	0	1	1	0	0	$v_{bB2} - v_{aB2} + v_{cB3} - v_{aB3}$
В	1 - 7 - 6	0	0	1	0	0	1	0	1	0	1	0	0	0	1	0	0	0	1	$v_{bB2} - v_{aB2} + v_{bB3} - v_{cB3}$
В	1 - 7 - 7	0	0	1	0	0	1	0	1	0	1	0	0	0	1	0	1	0	0	$v_{bB2} - v_{aB2} + v_{bB3} - v_{aB3}$
В	1 - 7 - 8	0	0	1	0	0	1	0	1	0	1	0	0	1	0	0	0	0	1	$v_{bB2} - v_{aB2} + v_{aB3} - v_{cB3}$
В	1 - 7 - 9	0	0	1	0	0	1	0	1	0	1	0	0	1	0	0	0	1	0	$v_{bB2} - v_{aB2} + v_{aB3} - v_{bB3}$
В	1 - 8 - 1	0	0	1	0	0	1	1	0	0	0	0	1	0	0	1	0	0	1	$v_{aB2} - v_{cB2}$
В	1 - 8 - 2	0	0	1	0	0	1	1	0	0	0	0	1	0	1	0	0	1	0	$v_{aB2} - v_{cB2}$
В	1 - 8 - 3	0	0	1	0	0	1	1	0	0	0	0	1	1	0	0	1	0	0	$v_{aB2} - v_{cB2}$
В	1 - 8 - 4	0	0	1	0	0	1	1	0	0	0	0	1	0	0	1	0	1	0	$v_{aB2} - v_{cB2} + v_{cB3} - v_{bB3}$
В	1 - 8 - 5	0	0	1	0	0	1	1	0	0	0	0	1	0	0	1	1	0	0	$v_{aB2} - v_{cB2} + v_{cB3} - v_{aB3}$
В	1 - 8 - 6	0	0	1	0	0	1	1	0	0	0	0	1	0	1	0	0	0	1	$v_{aB2} - v_{cB2} + v_{bB3} - v_{cB3}$
В	1 - 8 - 7	0	0	1	0	0	1	1	0	0	0	0	1	0	1	0	1	0	0	$v_{aB2} - v_{cB2} + v_{bB3} - v_{aB3}$
В	1 - 8 - 8	0	0	1	0	0	1	1	0	0	0	0	1	1	0	0	0	0	1	$v_{aB2} - v_{cB2} + v_{aB3} - v_{cB3}$
В	1 - 8 - 9	0	0	1	0	0	1	1	0	0	0	0	1	1	0	0	0	1	0	$v_{aB2} - v_{cB2} + v_{aB3} - v_{bB3}$
В	1 - 9 - 1	0	0	1	0	0	1	1	0	0	0	1	0	0	0	1	0	0	1	$v_{aB2} - v_{bB2}$
В	1 - 9 - 2	0	0	1	0	0	1	1	0	0	0	1	0	0	1	0	0	1	0	$v_{aB2} - v_{bB2}$
В	1 - 9 - 3	0	0	1	0	0	1	1	0	0	0	1	0	1	0	0	1	0	0	$v_{aB2} - v_{bB2}$
В	1 - 9 - 4	0	0	1	0	0	1	1	0	0	0	1	0	0	0	1	0	1	0	$v_{aB2} - v_{bB2} + v_{cB3} - v_{bB3}$
В	1 - 9 - 5	0	0	1	0	0	1	1	0	0	0	1	0	0	0	1	1	0	0	$v_{aB2} - v_{bB2} + v_{cB3} - v_{aB3}$
В	1 - 9 - 6	0	0	1	0	0	1	1	0	0	0	1	0	0	1	0	0	0	1	$v_{aB2} - v_{bB2} + v_{bB3} - v_{cB3}$
В	1 - 9 - 7	0	0	1	0	0	1	1	0	0	0	1	0	0	1	0	1	0	0	$v_{aB2} - v_{bB2} + v_{bB3} - v_{aB3}$
В	1 - 9 - 8	0	0	1	0	0	1	1	0	0	0	1	0	1	0	0	0	0	1	$v_{aB2} - v_{bB2} + v_{aB3} - v_{cB3}$
В	1 - 9 - 9	0	0	1	0	0	1	1	0	0	0	1	0	1	0	0	0	1	0	$v_{aB2} - v_{bB2} + v_{aB3} - v_{bB3}$

Tabla 45: Estados válidos de conmutación de cada convertidor matricial 3x1

				B_1						B_2						B_3				
Fase	Est. conmut.	S_1	S_2	S_3	S_4	S_5	S_6	S_1	S_2	S_3	S_4	S_5	S_6	S_1	S_2	S_3	S_4	S_5	S_6	v_{xn}
В	2 - 1 - 1	0	1	0	0	1	0	0	0	1	0	0	1	0	0	1	0	0	1	0
В	2 - 1 - 2	0	1	0	0	1	0	0	0	1	0	0	1	0	1	0	0	1	0	0
В	2 - 1 - 3	0	1	0	0	1	0	0	0	1	0	0	1	1	0	0	1	0	0	0
В	2 - 1 - 4	0	1	0	0	1	0	0	0	1	0	0	1	0	0	1	0	1	0	$v_{cB3} - v_{bB3}$
В	2 - 1 - 5	0	1	0	0	1	0	0	0	1	0	0	1	0	0	1	1	0	0	$v_{cB3} - v_{aB3}$
В	2 - 1 - 6	0	1	0	0	1	0	0	0	1	0	0	1	0	1	0	0	0	1	$v_{bB3} - v_{cB3}$
В	2 - 1 - 7	0	1	0	0	1	0	0	0	1	0	0	1	0	1	0	1	0	0	$v_{bB3} - v_{aB3}$
В	2 - 1 - 8	0	1	0	0	1	0	0	0	1	0	0	1	1	0	0	0	0	1	$v_{aB3} - v_{cB3}$
В	2 - 1 - 9	0	1	0	0	1	0	0	0	1	0	0	1	1	0	0	0	1	0	$v_{aB3} - v_{bB3}$
В	2 - 2 - 1	0	1	0	0	1	0	0	1	0	0	1	0	0	0	1	0	0	1	0
В	2 - 2 - 2	0	1	0	0	1	0	0	1	0	0	1	0	0	1	0	0	1	0	0
В	2 - 2 - 3	0	1	0	0	1	0	0	1	0	0	1	0	1	0	0	1	0	0	0
В	2 - 2 - 4	0	1	0	0	1	0	0	1	0	0	1	0	0	0	1	0	1	0	$v_{cB3} - v_{bB3}$
В	2 - 2 - 5	0	1	0	0	1	0	0	1	0	0	1	0	0	0	1	1	0	0	$v_{cB3} - v_{aB3}$
В	2 - 2 - 6	0	1	0	0	1	0	0	1	0	0	1	0	0	1	0	0	0	1	$v_{bB3} - v_{cB3}$
В	2 - 2 - 7	0	1	0	0	1	0	0	1	0	0	1	0	0	1	0	1	0	0	$v_{bB3} - v_{aB3}$
В	2 - 2 - 8	0	1	0	0	1	0	0	1	0	0	1	0	1	0	0	0	0	1	$v_{aB3} - v_{cB3}$
В	2 - 2 - 9	0	1	0	0	1	0	0	1	0	0	1	0	1	0	0	0	1	0	$v_{aB3} - v_{bB3}$
В	2 - 3 - 1	0	1	0	0	1	0	1	0	0	1	0	0	0	0	1	0	0	1	0
В	2 - 3 - 2	0	1	0	0	1	0	1	0	0	1	0	0	0	1	0	0	1	0	0
В	2 - 3 - 3	0	1	0	0	1	0	1	0	0	1	0	0	1	0	0	1	0	0	0
В	2 - 3 - 4	0	1	0	0	1	0	1	0	0	1	0	0	0	0	1	0	1	0	$v_{cB3} - v_{bB3}$
В	2 - 3 - 5	0	1	0	0	1	0	1	0	0	1	0	0	0	0	1	1	0	0	$v_{cB3} - v_{aB3}$
В	2 - 3 - 6	0	1	0	0	1	0	1	0	0	1	0	0	0	1	0	0	0	1	$v_{bB3} - v_{cB3}$
В	2 - 3 - 7	0	1	0	0	1	0	1	0	0	1	0	0	0	1	0	1	0	0	$v_{bB3} - v_{aB3}$
В	2 - 3 - 8	0	1	0	0	1	0	1	0	0	1	0	0	1	0	0	0	0	1	$v_{aB3} - v_{cB3}$
В	2 - 3 - 9	0	1	0	0	1	0	1	0	0	1	0	0	1	0	0	0	1	0	$v_{aB3} - v_{bB3}$

Tabla 46: Estados válidos de conmutación de cada convertidor matricial $3\mathrm{x}1$

				B_1						B_2						B_3				
Fase	Est. conmut.	S_1	S_2	S_3	S_4	S_5	S_6	S_1	S_2	S_3	S_4	S_5	S_6	S_1	S_2	S_3	S_4	S_5	S_6	v_{xn}
В	2 - 4 - 1	0	1	0	0	1	0	0	0	1	0	1	0	0	0	1	0	0	1	$v_{cB2} - v_{bB2}$
В	2 - 4 - 2	0	1	0	0	1	0	0	0	1	0	1	0	0	1	0	0	1	0	$v_{cB2} - v_{bB2}$
В	2 - 4 - 3	0	1	0	0	1	0	0	0	1	0	1	0	1	0	0	1	0	0	$v_{cB2} - v_{bB2}$
В	2 - 4 - 4	0	1	0	0	1	0	0	0	1	0	1	0	0	0	1	0	1	0	$v_{cB2} - v_{bB2} + v_{cB3} - v_{bB3}$
В	2 - 4 - 5	0	1	0	0	1	0	0	0	1	0	1	0	0	0	1	1	0	0	$v_{cB2} - v_{bB2} + v_{cB3} - v_{aB3}$
В	2 - 4 - 6	0	1	0	0	1	0	0	0	1	0	1	0	0	1	0	0	0	1	$v_{cB2} - v_{bB2} + v_{bB3} - v_{cB3}$
В	2 - 4 - 7	0	1	0	0	1	0	0	0	1	0	1	0	0	1	0	1	0	0	$v_{cB2} - v_{bB2} + v_{bB3} - v_{aB3}$
В	2 - 4 - 8	0	1	0	0	1	0	0	0	1	0	1	0	1	0	0	0	0	1	$v_{cB2} - v_{bB2} + v_{aB3} - v_{cB3}$
В	2 - 4 - 9	0	1	0	0	1	0	0	0	1	0	1	0	1	0	0	0	1	0	$v_{cB2} - v_{bB2} + v_{aB3} - v_{bB3}$
В	2 - 5 - 1	0	1	0	0	1	0	0	0	1	1	0	0	0	0	1	0	0	1	$v_{cB2} - v_{aB2}$
В	2 - 5 - 2	0	1	0	0	1	0	0	0	1	1	0	0	0	1	0	0	1	0	$v_{cB2} - v_{aB2}$
В	2 - 5 - 3	0	1	0	0	1	0	0	0	1	1	0	0	1	0	0	1	0	0	$v_{cB2} - v_{aB2}$
В	2 - 5 - 4	0	1	0	0	1	0	0	0	1	1	0	0	0	0	1	0	1	0	$v_{cB2} - v_{aB2} + v_{cB3} - v_{bB3}$
В	2 - 5 - 5	0	1	0	0	1	0	0	0	1	1	0	0	0	0	1	1	0	0	$v_{cB2} - v_{aB2} + v_{cB3} - v_{aB3}$
В	2 - 5 - 6	0	1	0	0	1	0	0	0	1	1	0	0	0	1	0	0	0	1	$v_{cB2} - v_{aB2} + v_{bB3} - v_{cB3}$
В	2 - 5 - 7	0	1	0	0	1	0	0	0	1	1	0	0	0	1	0	1	0	0	$v_{cB2} - v_{aB2} + v_{bB3} - v_{aB3}$
В	2 - 5 - 8	0	1	0	0	1	0	0	0	1	1	0	0	1	0	0	0	0	1	$v_{cB2} - v_{aB2} + v_{aB3} - v_{cB3}$
В	2 - 5 - 9	0	1	0	0	1	0	0	0	1	1	0	0	1	0	0	0	1	0	$v_{cB2} - v_{aB2} + v_{aB3} - v_{bB3}$
В	2 - 6 - 1	0	1	0	0	1	0	0	1	0	0	0	1	0	0	1	0	0	1	$v_{bB2} - v_{cB2}$
В	2 - 6 - 2	0	1	0	0	1	0	0	1	0	0	0	1	0	1	0	0	1	0	$v_{bB2} - v_{cB2}$
В	2 - 6 - 3	0	1	0	0	1	0	0	1	0	0	0	1	1	0	0	1	0	0	$v_{bB2} - v_{cB2}$
В	2 - 6 - 4	0	1	0	0	1	0	0	1	0	0	0	1	0	0	1	0	1	0	$v_{bB2} - v_{cB2} + v_{cB3} - v_{bB3}$
В	2 - 6 - 5	0	1	0	0	1	0	0	1	0	0	0	1	0	0	1	1	0	0	$v_{bB2} - v_{cB2} + v_{cB3} - v_{aB3}$
В	2 - 6 - 6	0	1	0	0	1	0	0	1	0	0	0	1	0	1	0	0	0	1	$v_{bB2} - v_{cB2} + v_{bB3} - v_{cB3}$
В	2 - 6 - 7	0	1	0	0	1	0	0	1	0	0	0	1	0	1	0	1	0	0	$v_{bB2} - v_{cB2} + v_{bB3} - v_{aB3}$
В	2 - 6 - 8	0	1	0	0	1	0	0	1	0	0	0	1	1	0	0	0	0	1	$v_{bB2} - v_{cB2} + v_{aB3} - v_{cB3}$
В	2 - 6 - 9	0	1	0	0	1	0	0	1	0	0	0	1	1	0	0	0	1	0	$v_{bB2} - v_{cB2} + v_{aB2} - v_{bB2}$

Tabla 47: Estados válidos de conmutación de cada convertidor matricial 3x1

				B_1						B_2						B_3				
Fase	Est. conmut.	S_1	S_2	S_3	S_4	S_5	S_6	S_1	S_2	S_3	S_4	S_5	S_6	S_1	S_2	S_3	S_4	S_5	S_6	v_{xn}
В	2 - 7 - 1	0	1	0	0	1	0	0	1	0	1	0	0	0	0	1	0	0	1	$v_{bB2} - v_{aB2}$
В	2 - 7 - 2	0	1	0	0	1	0	0	1	0	1	0	0	0	1	0	0	1	0	$v_{bB2} - v_{aB2}$
В	2 - 7 - 3	0	1	0	0	1	0	0	1	0	1	0	0	1	0	0	1	0	0	$v_{bB2} - v_{aB2}$
В	2 - 7 - 4	0	1	0	0	1	0	0	1	0	1	0	0	0	0	1	0	1	0	$v_{bB2} - v_{aB2} + v_{cB3} - v_{bB3}$
В	2 - 7 - 5	0	1	0	0	1	0	0	1	0	1	0	0	0	0	1	1	0	0	$v_{bB2} - v_{aB2} + v_{cB3} - v_{aB3}$
В	2 - 7 - 6	0	1	0	0	1	0	0	1	0	1	0	0	0	1	0	0	0	1	$v_{bB2} - v_{aB2} + v_{bB3} - v_{cB3}$
В	2 - 7 - 7	0	1	0	0	1	0	0	1	0	1	0	0	0	1	0	1	0	0	$v_{bB2} - v_{aB2} + v_{bB3} - v_{aB3}$
В	2 - 7 - 8	0	1	0	0	1	0	0	1	0	1	0	0	1	0	0	0	0	1	$v_{bB2} - v_{aB2} + v_{aB3} - v_{cB3}$
В	2 - 7 - 9	0	1	0	0	1	0	0	1	0	1	0	0	1	0	0	0	1	0	$v_{bB2} - v_{aB2} + v_{aB3} - v_{bB3}$
В	2 - 8 - 1	0	1	0	0	1	0	1	0	0	0	0	1	0	0	1	0	0	1	$v_{aB2} - v_{cB2}$
В	2 - 8 - 2	0	1	0	0	1	0	1	0	0	0	0	1	0	1	0	0	1	0	$v_{aB2} - v_{cB2}$
В	2 - 8 - 3	0	1	0	0	1	0	1	0	0	0	0	1	1	0	0	1	0	0	$v_{aB2} - v_{cB2}$
В	2 - 8 - 4	0	1	0	0	1	0	1	0	0	0	0	1	0	0	1	0	1	0	$v_{aB2} - v_{cB2} + v_{cB3} - v_{bB3}$
В	2 - 8 - 5	0	1	0	0	1	0	1	0	0	0	0	1	0	0	1	1	0	0	$v_{aB2} - v_{cB2} + v_{cB3} - v_{aB3}$
В	2 - 8 - 6	0	1	0	0	1	0	1	0	0	0	0	1	0	1	0	0	0	1	$v_{aB2} - v_{cB2} + v_{bB3} - v_{cB3}$
В	2 - 8 - 7	0	1	0	0	1	0	1	0	0	0	0	1	0	1	0	1	0	0	$v_{aB2} - v_{cB2} + v_{bB3} - v_{aB3}$
В	2 - 8 - 8	0	1	0	0	1	0	1	0	0	0	0	1	1	0	0	0	0	1	$v_{aB2} - v_{cB2} + v_{aB3} - v_{cB3}$
В	2 - 8 - 9	0	1	0	0	1	0	1	0	0	0	0	1	1	0	0	0	1	0	$v_{aB2} - v_{cB2} + v_{aB3} - v_{bB3}$
В	2 - 9 - 1	0	1	0	0	1	0	1	0	0	0	1	0	0	0	1	0	0	1	$v_{aB2} - v_{bB2}$
В	2 - 9 - 2	0	1	0	0	1	0	1	0	0	0	1	0	0	1	0	0	1	0	$v_{aB2} - v_{bB2}$
В	2 - 9 - 3	0	1	0	0	1	0	1	0	0	0	1	0	1	0	0	1	0	0	$v_{aB2} - v_{bB2}$
В	2 - 9 - 4	0	1	0	0	1	0	1	0	0	0	1	0	0	0	1	0	1	0	$v_{aB2} - v_{bB2} + v_{cB3} - v_{bB3}$
В	2 - 9 - 5	0	1	0	0	1	0	1	0	0	0	1	0	0	0	1	1	0	0	$v_{aB2} - v_{bB2} + v_{cB3} - v_{aB3}$
В	2 - 9 - 6	0	1	0	0	1	0	1	0	0	0	1	0	0	1	0	0	0	1	$v_{aB2} - v_{bB2} + v_{bB3} - v_{cB3}$
В	2 - 9 - 7	0	1	0	0	1	0	1	0	0	0	1	0	0	1	0	1	0	0	$v_{aB2} - v_{bB2} + v_{bB3} - v_{aB3}$
В	2 - 9 - 8	0	1	0	0	1	0	1	0	0	0	1	0	1	0	0	0	0	1	$v_{aB2} - v_{bB2} + v_{aB3} - v_{cB3}$
В	2 - 9 - 9	0	1	0	0	1	0	1	0	0	0	1	0	1	0	0	0	1	0	$v_{aB2} - v_{bB2} + v_{aB3} - v_{bB3}$

Tabla 48: Estados válidos de conmutación de cada convertidor matricial 3x1

				B_1						B_2						B_3				
Fase	Est. conmut.	S_1	S_2	S_3	S_4	S_5	S_6	S_1	S_2	S_3	S_4	S_5	S_6	S_1	S_2	S_3	S_4	S_5	S_6	v_{xn}
В	3 - 1 - 1	1	0	0	1	0	0	0	0	1	0	0	1	0	0	1	0	0	1	0
В	3 - 1 - 2	1	0	0	1	0	0	0	0	1	0	0	1	0	1	0	0	1	0	0
В	3 - 1 - 3	1	0	0	1	0	0	0	0	1	0	0	1	1	0	0	1	0	0	0
В	3 - 1 - 4	1	0	0	1	0	0	0	0	1	0	0	1	0	0	1	0	1	0	$v_{cB3} - v_{bB3}$
В	3 - 1 - 5	1	0	0	1	0	0	0	0	1	0	0	1	0	0	1	1	0	0	$v_{cB3} - v_{aB3}$
В	3 - 1 - 6	1	0	0	1	0	0	0	0	1	0	0	1	0	1	0	0	0	1	$v_{bB3} - v_{cB3}$
В	3 - 1 - 7	1	0	0	1	0	0	0	0	1	0	0	1	0	1	0	1	0	0	$v_{bB3} - v_{aB3}$
В	3 - 1 - 8	1	0	0	1	0	0	0	0	1	0	0	1	1	0	0	0	0	1	$v_{aB3} - v_{cB3}$
В	3 - 1 - 9	1	0	0	1	0	0	0	0	1	0	0	1	1	0	0	0	1	0	$v_{aB3} - v_{bB3}$
В	3 - 2 - 1	1	0	0	1	0	0	0	1	0	0	1	0	0	0	1	0	0	1	0
В	3 - 2 - 2	1	0	0	1	0	0	0	1	0	0	1	0	0	1	0	0	1	0	0
В	3 - 2 - 3	1	0	0	1	0	0	0	1	0	0	1	0	1	0	0	1	0	0	0
В	3 - 2 - 4	1	0	0	1	0	0	0	1	0	0	1	0	0	0	1	0	1	0	$v_{cB3} - v_{bB3}$
В	3 - 2 - 5	1	0	0	1	0	0	0	1	0	0	1	0	0	0	1	1	0	0	$v_{cB3} - v_{aB3}$
В	3 - 2 - 6	1	0	0	1	0	0	0	1	0	0	1	0	0	1	0	0	0	1	$v_{bB3} - v_{cB3}$
В	3 - 2 - 7	1	0	0	1	0	0	0	1	0	0	1	0	0	1	0	1	0	0	$v_{bB3} - v_{aB3}$
В	3 - 2 - 8	1	0	0	1	0	0	0	1	0	0	1	0	1	0	0	0	0	1	$v_{aB3} - v_{cB3}$
В	3 - 2 - 9	1	0	0	1	0	0	0	1	0	0	1	0	1	0	0	0	1	0	$v_{aB3} - v_{bB3}$
В	3 - 3 - 1	1	0	0	1	0	0	1	0	0	1	0	0	0	0	1	0	0	1	0
В	3 - 3 - 2	1	0	0	1	0	0	1	0	0	1	0	0	0	1	0	0	1	0	0
В	3 - 3 - 3	1	0	0	1	0	0	1	0	0	1	0	0	1	0	0	1	0	0	0
В	3 - 3 - 4	1	0	0	1	0	0	1	0	0	1	0	0	0	0	1	0	1	0	$v_{cB3} - v_{bB3}$
В	3 - 3 - 5	1	0	0	1	0	0	1	0	0	1	0	0	0	0	1	1	0	0	$v_{cB3} - v_{aB3}$
В	3 - 3 - 6	1	0	0	1	0	0	1	0	0	1	0	0	0	1	0	0	0	1	$v_{bB3} - v_{cB3}$
В	3 - 3 - 7	1	0	0	1	0	0	1	0	0	1	0	0	0	1	0	1	0	0	$v_{bB3} - v_{aB3}$
В	3 - 3 - 8	1	0	0	1	0	0	1	0	0	1	0	0	1	0	0	0	0	1	$v_{aB3} - v_{cB3}$
В	3 - 3 - 9	1	0	0	1	0	0	1	0	0	1	0	0	1	0	0	0	1	0	$v_{aB3} - v_{bB3}$

Tabla 49: Estados válidos de conmutación de cada convertidor matricial $3\mathrm{x}1$

				B_1						B_2						B_3				
Fase	Est. conmut.	S_1	S_2	S_3	S_4	S_5	S_6	S_1	S_2	S_3	S_4	S_5	S_6	S_1	S_2	S_3	S_4	S_5	S_6	v_{xn}
В	3 - 4 - 1	1	0	0	1	0	0	0	0	1	0	1	0	0	0	1	0	0	1	$v_{cB2} - v_{bB2}$
В	3 - 4 - 2	1	0	0	1	0	0	0	0	1	0	1	0	0	1	0	0	1	0	$v_{cB2} - v_{bB2}$
В	3 - 4 - 3	1	0	0	1	0	0	0	0	1	0	1	0	1	0	0	1	0	0	$v_{cB2} - v_{bB2}$
В	3 - 4 - 4	1	0	0	1	0	0	0	0	1	0	1	0	0	0	1	0	1	0	$v_{cB2} - v_{bB2} + v_{cB3} - v_{bB3}$
В	3 - 4 - 5	1	0	0	1	0	0	0	0	1	0	1	0	0	0	1	1	0	0	$v_{cB2} - v_{bB2} + v_{cB3} - v_{aB3}$
В	3 - 4 - 6	1	0	0	1	0	0	0	0	1	0	1	0	0	1	0	0	0	1	$v_{cB2} - v_{bB2} + v_{bB3} - v_{cB3}$
В	3 - 4 - 7	1	0	0	1	0	0	0	0	1	0	1	0	0	1	0	1	0	0	$v_{cB2} - v_{bB2} + v_{bB3} - v_{aB3}$
В	3 - 4 - 8	1	0	0	1	0	0	0	0	1	0	1	0	1	0	0	0	0	1	$v_{cB2} - v_{bB2} + v_{aB3} - v_{cB3}$
В	3 - 4 - 9	1	0	0	1	0	0	0	0	1	0	1	0	1	0	0	0	1	0	$v_{cB2} - v_{bB2} + v_{aB3} - v_{bB3}$
В	3 - 5 - 1	1	0	0	1	0	0	0	0	1	1	0	0	0	0	1	0	0	1	$v_{cB2} - v_{aB2}$
В	3 - 5 - 2	1	0	0	1	0	0	0	0	1	1	0	0	0	1	0	0	1	0	$v_{cB2} - v_{aB2}$
В	3 - 5 - 3	1	0	0	1	0	0	0	0	1	1	0	0	1	0	0	1	0	0	$v_{cB2} - v_{aB2}$
В	3 - 5 - 4	1	0	0	1	0	0	0	0	1	1	0	0	0	0	1	0	1	0	$v_{cB2} - v_{aB2} + v_{cB3} - v_{bB3}$
В	3 - 5 - 5	1	0	0	1	0	0	0	0	1	1	0	0	0	0	1	1	0	0	$v_{cB2} - v_{aB2} + v_{cB3} - v_{aB3}$
В	3 - 5 - 6	1	0	0	1	0	0	0	0	1	1	0	0	0	1	0	0	0	1	$v_{cB2} - v_{aB2} + v_{bB3} - v_{cB3}$
В	3 - 5 - 7	1	0	0	1	0	0	0	0	1	1	0	0	0	1	0	1	0	0	$v_{cB2} - v_{aB2} + v_{bB3} - v_{aB3}$
В	3 - 5 - 8	1	0	0	1	0	0	0	0	1	1	0	0	1	0	0	0	0	1	$v_{cB2} - v_{aB2} + v_{aB3} - v_{cB3}$
В	3 - 5 - 9	1	0	0	1	0	0	0	0	1	1	0	0	1	0	0	0	1	0	$v_{cB2} - v_{aB2} + v_{aB3} - v_{bB3}$
В	3 - 6 - 1	1	0	0	1	0	0	0	1	0	0	0	1	0	0	1	0	0	1	$v_{bB2} - v_{cB2}$
В	3 - 6 - 2	1	0	0	1	0	0	0	1	0	0	0	1	0	1	0	0	1	0	$v_{bB2} - v_{cB2}$
В	3 - 6 - 3	1	0	0	1	0	0	0	1	0	0	0	1	1	0	0	1	0	0	$v_{bB2} - v_{cB2}$
В	3 - 6 - 4	1	0	0	1	0	0	0	1	0	0	0	1	0	0	1	0	1	0	$v_{bB2} - v_{cB2} + v_{cB3} - v_{bB3}$
В	3 - 6 - 5	1	0	0	1	0	0	0	1	0	0	0	1	0	0	1	1	0	0	$v_{bB2} - v_{cB2} + v_{cB3} - v_{aB3}$
В	3 - 6 - 6	1	0	0	1	0	0	0	1	0	0	0	1	0	1	0	0	0	1	$v_{bB2} - v_{cB2} + v_{bB3} - v_{cB3}$
В	3 - 6 - 7	1	0	0	1	0	0	0	1	0	0	0	1	0	1	0	1	0	0	$v_{bB2} - v_{cB2} + v_{bB3} - v_{aB3}$
В	3 - 6 - 8	1	0	0	1	0	0	0	1	0	0	0	1	1	0	0	0	0	1	$v_{bB2} - v_{cB2} + v_{aB3} - v_{cB3}$
В	3 - 6 - 9	1	0	0	1	0	0	0	1	0	0	0	1	1	0	0	0	1	0	$v_{bB2} - v_{cB2} + v_{aB2} - v_{bB2}$

Tabla 50: Estados válidos de conmutación de cada convertidor matricial 3x1

				B_1						B_2						B_3				L
Fase	Est. conmut.	S_1	S_2	S_3	S_4	S_5	S_6	S_1	S_2	S_3	S_4	S_5	S_6	S_1	S_2	S_3	S_4	S_5	S_6	v_{xn}
В	3 - 7 - 1	1	0	0	1	0	0	0	1	0	1	0	0	0	0	1	0	0	1	$v_{bB2} - v_{aB2}$
В	3 - 7 - 2	1	0	0	1	0	0	0	1	0	1	0	0	0	1	0	0	1	0	$v_{bB2} - v_{aB2}$
В	3 - 7 - 3	1	0	0	1	0	0	0	1	0	1	0	0	1	0	0	1	0	0	$v_{bB2} - v_{aB2}$
В	3 - 7 - 4	1	0	0	1	0	0	0	1	0	1	0	0	0	0	1	0	1	0	$v_{bB2} - v_{aB2} + v_{cB3} - v_{bB3}$
В	3 - 7 - 5	1	0	0	1	0	0	0	1	0	1	0	0	0	0	1	1	0	0	$v_{bB2} - v_{aB2} + v_{cB3} - v_{aB3}$
В	3 - 7 - 6	1	0	0	1	0	0	0	1	0	1	0	0	0	1	0	0	0	1	$v_{bB2} - v_{aB2} + v_{bB3} - v_{cB3}$
В	3 - 7 - 7	1	0	0	1	0	0	0	1	0	1	0	0	0	1	0	1	0	0	$v_{bB2} - v_{aB2} + v_{bB3} - v_{aB3}$
В	3 - 7 - 8	1	0	0	1	0	0	0	1	0	1	0	0	1	0	0	0	0	1	$v_{bB2} - v_{aB2} + v_{aB3} - v_{cB3}$
В	3 - 7 - 9	1	0	0	1	0	0	0	1	0	1	0	0	1	0	0	0	1	0	$v_{bB2} - v_{aB2} + v_{aB3} - v_{bB3}$
В	3 - 8 - 1	1	0	0	1	0	0	1	0	0	0	0	1	0	0	1	0	0	1	$v_{aB2} - v_{cB2}$
В	3 - 8 - 2	1	0	0	1	0	0	1	0	0	0	0	1	0	1	0	0	1	0	$v_{aB2} - v_{cB2}$
В	3 - 8 - 3	1	0	0	1	0	0	1	0	0	0	0	1	1	0	0	1	0	0	$v_{aB2} - v_{cB2}$
В	3 - 8 - 4	1	0	0	1	0	0	1	0	0	0	0	1	0	0	1	0	1	0	$v_{aB2} - v_{cB2} + v_{cB3} - v_{bB3}$
В	3 - 8 - 5	1	0	0	1	0	0	1	0	0	0	0	1	0	0	1	1	0	0	$v_{aB2} - v_{cB2} + v_{cB3} - v_{aB3}$
В	3 - 8 - 6	1	0	0	1	0	0	1	0	0	0	0	1	0	1	0	0	0	1	$v_{aB2} - v_{cB2} + v_{bB3} - v_{cB3}$
В	3 - 8 - 7	1	0	0	1	0	0	1	0	0	0	0	1	0	1	0	1	0	0	$v_{aB2} - v_{cB2} + v_{bB3} - v_{aB3}$
В	3 - 8 - 8	1	0	0	1	0	0	1	0	0	0	0	1	1	0	0	0	0	1	$v_{aB2} - v_{cB2} + v_{aB3} - v_{cB3}$
В	3 - 8 - 9	1	0	0	1	0	0	1	0	0	0	0	1	1	0	0	0	1	0	$v_{aB2} - v_{cB2} + v_{aB3} - v_{bB3}$
В	3 - 9 - 1	1	0	0	1	0	0	1	0	0	0	1	0	0	0	1	0	0	1	$v_{aB2} - v_{bB2}$
В	3 - 9 - 2	1	0	0	1	0	0	1	0	0	0	1	0	0	1	0	0	1	0	$v_{aB2} - v_{bB2}$
В	3 - 9 - 3	1	0	0	1	0	0	1	0	0	0	1	0	1	0	0	1	0	0	$v_{aB2} - v_{bB2}$
В	3 - 9 - 4	1	0	0	1	0	0	1	0	0	0	1	0	0	0	1	0	1	0	$v_{aB2} - v_{bB2} + v_{cB3} - v_{bB3}$
В	3 - 9 - 5	1	0	0	1	0	0	1	0	0	0	1	0	0	0	1	1	0	0	$v_{aB2} - v_{bB2} + v_{cB3} - v_{aB3}$
В	3 - 9 - 6	1	0	0	1	0	0	1	0	0	0	1	0	0	1	0	0	0	1	$v_{aB2} - v_{bB2} + v_{bB3} - v_{cB3}$
В	3 - 9 - 7	1	0	0	1	0	0	1	0	0	0	1	0	0	1	0	1	0	0	$v_{aB2} - v_{bB2} + v_{bB3} - v_{aB3}$
В	3 - 9 - 8	1	0	0	1	0	0	1	0	0	0	1	0	1	0	0	0	0	1	$v_{aB2} - v_{bB2} + v_{aB3} - v_{cB3}$
В	3 - 9 - 9	1	0	0	1	0	0	1	0	0	0	1	0	1	0	0	0	1	0	$v_{aB2} - v_{bB2} + v_{aB3} - v_{bB3}$

Tabla 51: Estados válidos de conmutación de cada convertidor matricial 3x1

				B_1						B_2						B_3				
Fase	Est. conmut.	S_1	S_2	S_3	S_4	S_5	S_6	S_1	S_2	S_3	S_4	S_5	S_6	S_1	S_2	S_3	S_4	S_5	S_6	v_{xn}
В	4 - 1 - 1	0	0	1	0	1	0	0	0	1	0	0	1	0	0	1	0	0	1	$v_{cB1} - v_{bB1}$
В	4 - 1 - 2	0	0	1	0	1	0	0	0	1	0	0	1	0	1	0	0	1	0	$v_{cB1} - v_{bB1}$
В	4 - 1 - 3	0	0	1	0	1	0	0	0	1	0	0	1	1	0	0	1	0	0	$v_{cB1} - v_{bB1}$
В	4 - 1 - 4	0	0	1	0	1	0	0	0	1	0	0	1	0	0	1	0	1	0	$v_{cB1} - v_{bB1} + v_{cB3} - v_{bB3}$
В	4 - 1 - 5	0	0	1	0	1	0	0	0	1	0	0	1	0	0	1	1	0	0	$v_{cB1} - v_{bB1} + v_{cB3} - v_{aB3}$
В	4 - 1 - 6	0	0	1	0	1	0	0	0	1	0	0	1	0	1	0	0	0	1	$v_{cB1} - v_{bB1} + v_{bB3} - v_{cB3}$
В	4 - 1 - 7	0	0	1	0	1	0	0	0	1	0	0	1	0	1	0	1	0	0	$v_{cB1} - v_{bB1} + v_{bB3} - v_{aB3}$
В	4 - 1 - 8	0	0	1	0	1	0	0	0	1	0	0	1	1	0	0	0	0	1	$v_{cB1} - v_{bB1} + v_{aB3} - v_{cB3}$
В	4 - 1 - 9	0	0	1	0	1	0	0	0	1	0	0	1	1	0	0	0	1	0	$v_{cB1} - v_{bB1} + v_{aB3} - v_{bB3}$
В	4 - 2 - 1	0	0	1	0	1	0	0	1	0	0	1	0	0	0	1	0	0	1	$v_{cB1} - v_{bB1}$
В	4 - 2 - 2	0	0	1	0	1	0	0	1	0	0	1	0	0	1	0	0	1	0	$v_{cB1} - v_{bB1}$
В	4 - 2 - 3	0	0	1	0	1	0	0	1	0	0	1	0	1	0	0	1	0	0	$v_{cB1} - v_{bB1}$
В	4 - 2 - 4	0	0	1	0	1	0	0	1	0	0	1	0	0	0	1	0	1	0	$v_{cB1} - v_{bB1} + v_{cB3} - v_{bB3}$
В	4 - 2 - 5	0	0	1	0	1	0	0	1	0	0	1	0	0	0	1	1	0	0	$v_{cB1} - v_{bB1} + v_{cB3} - v_{aB3}$
В	4 - 2 - 6	0	0	1	0	1	0	0	1	0	0	1	0	0	1	0	0	0	1	$v_{cB1} - v_{bB1} + v_{bB3} - v_{cB3}$
В	4 - 2 - 7	0	0	1	0	1	0	0	1	0	0	1	0	0	1	0	1	0	0	$v_{cB1} - v_{bB1} + v_{bB3} - v_{aB3}$
В	4 - 2 - 8	0	0	1	0	1	0	0	1	0	0	1	0	1	0	0	0	0	1	$v_{cB1} - v_{bB1} + v_{aB3} - v_{cB3}$
В	4 - 2 - 9	0	0	1	0	1	0	0	1	0	0	1	0	1	0	0	0	1	0	$v_{cB1} - v_{bB1} + v_{aB3} - v_{bB3}$
В	4 - 3 - 1	0	0	1	0	1	0	1	0	0	1	0	0	0	0	1	0	0	1	$v_{cB1} - v_{bB1}$
В	4 - 3 - 2	0	0	1	0	1	0	1	0	0	1	0	0	0	1	0	0	1	0	$v_{cB1} - v_{bB1}$
В	4 - 3 - 3	0	0	1	0	1	0	1	0	0	1	0	0	1	0	0	1	0	0	$v_{cB1} - v_{bB1}$
В	4 - 3 - 4	0	0	1	0	1	0	1	0	0	1	0	0	0	0	1	0	1	0	$v_{cB1} - v_{bB1} + v_{cB3} - v_{bB3}$
В	4 - 3 - 5	0	0	1	0	1	0	1	0	0	1	0	0	0	0	1	1	0	0	$v_{cB1} - v_{bB1} + v_{cB3} - v_{aB3}$
В	4 - 3 - 6	0	0	1	0	1	0	1	0	0	1	0	0	0	1	0	0	0	1	$v_{cB1} - v_{bB1} + v_{bB3} - v_{cB3}$
В	4 - 3 - 7	0	0	1	0	1	0	1	0	0	1	0	0	0	1	0	1	0	0	$v_{cB1} - v_{bB1} + v_{bB3} - v_{aB3}$
В	4 - 3 - 8	0	0	1	0	1	0	1	0	0	1	0	0	1	0	0	0	0	1	$v_{cB1} - v_{bB1} + v_{aB3} - v_{cB3}$
В	4 - 3 - 9	0	0	1	0	1	0	1	0	0	1	0	0	1	0	0	0	1	0	$v_{cB1} - v_{bB1} + v_{aB3} - v_{bB3}$

Tabla 52: Estados válidos de conmutación de cada convertidor matricial 3x1

				B_1						B_2						B_3				
Fase	Est. conmut.	S_1	S_2	S_3	S_4	S_5	S_6	S_1	S_2	S_3	S_4	S_5	S_6	S_1	S_2	S_3	S_4	S_5	S_6	v_{xn}
В	4 - 4 - 1	0	0	1	0	1	0	0	0	1	0	1	0	0	0	1	0	0	1	$v_{cB1} - v_{bB1} + v_{cB2} - v_{bB2}$
В	4 - 4 - 2	0	0	1	0	1	0	0	0	1	0	1	0	0	1	0	0	1	0	$v_{cB1} - v_{bB1} + v_{cB2} - v_{bB2}$
В	4 - 4 - 3	0	0	1	0	1	0	0	0	1	0	1	0	1	0	0	1	0	0	$v_{cB1} - v_{bB1} + v_{cB2} - v_{bB2}$
В	4 - 4 - 4	0	0	1	0	1	0	0	0	1	0	1	0	0	0	1	0	1	0	$v_{cB1} - v_{bB1} + v_{cB2} - v_{bB2} + v_{cB3} - v_{bB3}$
В	4 - 4 - 5	0	0	1	0	1	0	0	0	1	0	1	0	0	0	1	1	0	0	$v_{cB1} - v_{bB1} + v_{cB2} - v_{bB2} + v_{cB3} - v_{aB3}$
В	4 - 4 - 6	0	0	1	0	1	0	0	0	1	0	1	0	0	1	0	0	0	1	$v_{cB1} - v_{bB1} + v_{cB2} - v_{bB2} + v_{bB3} - v_{cB3}$
В	4 - 4 - 7	0	0	1	0	1	0	0	0	1	0	1	0	0	1	0	1	0	0	$v_{cB1} - v_{bB1} + v_{cB2} - v_{bB2} + v_{bB3} - v_{aB3}$
В	4 - 4 - 8	0	0	1	0	1	0	0	0	1	0	1	0	1	0	0	0	0	1	$v_{cB1} - v_{bB1} + v_{cB2} - v_{bB2} + v_{aB3} - v_{cB3}$
В	4 - 4 - 9	0	0	1	0	1	0	0	0	1	0	1	0	1	0	0	0	1	0	$v_{cB1} - v_{bB1} + v_{cB2} - v_{bB2} + v_{aB3} - v_{bB3}$
В	4 - 5 - 1	0	0	1	0	1	0	0	0	1	1	0	0	0	0	1	0	0	1	$v_{cB1} - v_{bB1} + v_{cB2} - v_{aB2}$
В	4 - 5 - 2	0	0	1	0	1	0	0	0	1	1	0	0	0	1	0	0	1	0	$v_{cB1} - v_{bB1} + v_{cB2} - v_{aB2}$
В	4 - 5 - 3	0	0	1	0	1	0	0	0	1	1	0	0	1	0	0	1	0	0	$v_{cB1} - v_{bB1} + v_{cB2} - v_{aB2}$
В	4 - 5 - 4	0	0	1	0	1	0	0	0	1	1	0	0	0	0	1	0	1	0	$v_{cB1} - v_{bB1} + v_{cB2} - v_{aB2} + v_{cB3} - v_{bB3}$
В	4 - 5 - 5	0	0	1	0	1	0	0	0	1	1	0	0	0	0	1	1	0	0	$v_{cB1} - v_{bB1} + v_{cB2} - v_{aB2} + v_{cB3} - v_{aB3}$
В	4 - 5 - 6	0	0	1	0	1	0	0	0	1	1	0	0	0	1	0	0	0	1	$v_{cB1} - v_{bB1} + v_{cB2} - v_{aB2} + v_{bB3} - v_{cB3}$
В	4 - 5 - 7	0	0	1	0	1	0	0	0	1	1	0	0	0	1	0	1	0	0	$v_{cB1} - v_{bB1} + v_{cB2} - v_{aB2} + v_{bB3} - v_{aB3}$
В	4 - 5 - 8	0	0	1	0	1	0	0	0	1	1	0	0	1	0	0	0	0	1	$v_{cB1} - v_{bB1} + v_{cB2} - v_{aB2} + v_{aB3} - v_{cB3}$
В	4 - 5 - 9	0	0	1	0	1	0	0	0	1	1	0	0	1	0	0	0	1	0	$v_{cB1} - v_{bB1} + v_{cB2} - v_{aB2} + v_{aB3} - v_{bB3}$
В	4 - 6 - 1	0	0	1	0	1	0	0	1	0	0	0	1	0	0	1	0	0	1	$v_{cB1} - v_{bB1} + v_{bB2} - v_{cB2}$
В	4 - 6 - 2	0	0	1	0	1	0	0	1	0	0	0	1	0	1	0	0	1	0	$v_{cB1} - v_{bB1} + v_{bB2} - v_{cB2}$
В	4 - 6 - 3	0	0	1	0	1	0	0	1	0	0	0	1	1	0	0	1	0	0	$v_{cB1} - v_{bB1} + v_{bB2} - v_{cB2}$
В	4 - 6 - 4	0	0	1	0	1	0	0	1	0	0	0	1	0	0	1	0	1	0	$v_{cB1} - v_{bB1} + v_{bB2} - v_{cB2} + v_{cB3} - v_{bB3}$
В	4 - 6 - 5	0	0	1	0	1	0	0	1	0	0	0	1	0	0	1	1	0	0	$v_{cB1} - v_{bB1} + v_{bB2} - v_{cB2} + v_{cB3} - v_{aB3}$
В	4 - 6 - 6	0	0	1	0	1	0	0	1	0	0	0	1	0	1	0	0	0	1	$v_{cB1} - v_{bB1} + v_{bB2} - v_{cB2} + v_{bB3} - v_{cB3}$
В	4 - 6 - 7	0	0	1	0	1	0	0	1	0	0	0	1	0	1	0	1	0	0	$v_{cB1} - v_{bB1} + v_{bB2} - v_{cB2} + v_{bB3} - v_{aB3}$
В	4 - 6 - 8	0	0	1	0	1	0	0	1	0	0	0	1	1	0	0	0	0	1	$v_{cB1} - v_{bB1} + v_{bB2} - v_{cB2} + v_{aB3} - v_{cB3}$
В	4 - 6 - 9	0	0	1	0	1	0	0	1	0	0	0	1	1	0	0	0	1	0	$v_{cB1} - v_{bB1} + v_{bB2} - v_{cB2} + v_{aB2} - v_{bB2}$

Tabla 53: Estados válidos de conmutación de cada convertidor matricial 3x1

				B_1						B_2						B_3				
Fase	Est. conmut.	S_1	S_2	S_3	S_4	S_5	S_6	S_1	S_2	S_3	S_4	S_5	S_6	S_1	S_2	S_3	S_4	S_5	S_6	v_{xn}
В	4 - 7 - 1	0	0	1	0	1	0	0	1	0	1	0	0	0	0	1	0	0	1	$v_{cB1} - v_{bB1} + v_{bB2} - v_{aB2}$
В	4 - 7 - 2	0	0	1	0	1	0	0	1	0	1	0	0	0	1	0	0	1	0	$v_{cB1} - v_{bB1} + v_{bB2} - v_{aB2}$
В	4 - 7 - 3	0	0	1	0	1	0	0	1	0	1	0	0	1	0	0	1	0	0	$v_{cB1} - v_{bB1} + v_{bB2} - v_{aB2}$
В	4 - 7 - 4	0	0	1	0	1	0	0	1	0	1	0	0	0	0	1	0	1	0	$v_{cB1} - v_{bB1} + v_{bB2} - v_{aB2} + v_{cB3} - v_{bB3}$
В	4 - 7 - 5	0	0	1	0	1	0	0	1	0	1	0	0	0	0	1	1	0	0	$v_{cB1} - v_{bB1} + v_{bB2} - v_{aB2} + v_{cB3} - v_{aB3}$
В	4 - 7 - 6	0	0	1	0	1	0	0	1	0	1	0	0	0	1	0	0	0	1	$v_{cB1} - v_{bB1} + v_{bB2} - v_{aB2} + v_{bB3} - v_{cB3}$
В	4 - 7 - 7	0	0	1	0	1	0	0	1	0	1	0	0	0	1	0	1	0	0	$v_{cB1} - v_{bB1} + v_{bB2} - v_{aB2} + v_{bB3} - v_{aB3}$
В	4 - 7 - 8	0	0	1	0	1	0	0	1	0	1	0	0	1	0	0	0	0	1	$v_{cB1} - v_{bB1} + v_{bB2} - v_{aB2} + v_{aB3} - v_{cB3}$
В	4 - 7 - 9	0	0	1	0	1	0	0	1	0	1	0	0	1	0	0	0	1	0	$v_{cB1} - v_{bB1} + v_{bB2} - v_{aB2} + v_{aB3} - v_{bB3}$
В	4 - 8 - 1	0	0	1	0	1	0	1	0	0	0	0	1	0	0	1	0	0	1	$v_{cB1} - v_{bB1} + v_{aB2} - v_{cB2}$
В	4 - 8 - 2	0	0	1	0	1	0	1	0	0	0	0	1	0	1	0	0	1	0	$v_{cB1} - v_{bB1} + v_{aB2} - v_{cB2}$
В	4 - 8 - 3	0	0	1	0	1	0	1	0	0	0	0	1	1	0	0	1	0	0	$v_{cB1} - v_{bB1} + v_{aB2} - v_{cB2}$
В	4 - 8 - 4	0	0	1	0	1	0	1	0	0	0	0	1	0	0	1	0	1	0	$v_{cB1} - v_{bB1} + v_{aB2} - v_{cB2} + v_{cB3} - v_{bB3}$
В	4 - 8 - 5	0	0	1	0	1	0	1	0	0	0	0	1	0	0	1	1	0	0	$v_{cB1} - v_{bB1} + v_{aB2} - v_{cB2} + v_{cB3} - v_{aB3}$
В	4 - 8 - 6	0	0	1	0	1	0	1	0	0	0	0	1	0	1	0	0	0	1	$v_{cB1} - v_{bB1} + v_{aB2} - v_{cB2} + v_{bB3} - v_{cB3}$
В	4 - 8 - 7	0	0	1	0	1	0	1	0	0	0	0	1	0	1	0	1	0	0	$v_{cB1} - v_{bB1} + v_{aB2} - v_{cB2} + v_{bB3} - v_{aB3}$
В	4 - 8 - 8	0	0	1	0	1	0	1	0	0	0	0	1	1	0	0	0	0	1	$v_{cB1} - v_{bB1} + v_{aB2} - v_{cB2} + v_{aB3} - v_{cB3}$
В	4 - 8 - 9	0	0	1	0	1	0	1	0	0	0	0	1	1	0	0	0	1	0	$v_{cB1} - v_{bB1} + v_{aB2} - v_{cB2} + v_{aB3} - v_{bB3}$
В	4 - 9 - 1	0	0	1	0	1	0	1	0	0	0	1	0	0	0	1	0	0	1	$v_{cB1} - v_{bB1} + v_{aB2} - v_{bB2}$
В	4 - 9 - 2	0	0	1	0	1	0	1	0	0	0	1	0	0	1	0	0	1	0	$v_{cB1} - v_{bB1} + v_{aB2} - v_{bB2}$
В	4 - 9 - 3	0	0	1	0	1	0	1	0	0	0	1	0	1	0	0	1	0	0	$v_{cB1} - v_{bB1} + v_{aB2} - v_{bB2}$
В	4 - 9 - 4	0	0	1	0	1	0	1	0	0	0	1	0	0	0	1	0	1	0	$v_{cB1} - v_{bB1} + v_{aB2} - v_{bB2} + v_{cB3} - v_{bB3}$
В	4 - 9 - 5	0	0	1	0	1	0	1	0	0	0	1	0	0	0	1	1	0	0	$v_{cB1} - v_{bB1} + v_{aB2} - v_{bB2} + v_{cB3} - v_{aB3}$
В	4 - 9 - 6	0	0	1	0	1	0	1	0	0	0	1	0	0	1	0	0	0	1	$v_{cB1} - v_{bB1} + v_{aB2} - v_{bB2} + v_{bB3} - v_{cB3}$
в	4 - 9 - 7	0	0	1	0	1	0	1	0	0	0	1	0	0	1	0	1	0	0	$v_{cB1} - v_{bB1} + v_{aB2} - v_{bB2} + v_{bB3} - v_{aB3}$
в	4 - 9 - 8	0	0	1	0	1	0	1	0	0	0	1	0	1	0	0	0	0	1	$v_{cB1} - v_{bB1} + v_{aB2} - v_{bB2} + v_{aB3} - v_{cB3}$
В	4 - 9 - 9	0	0	1	0	1	0	1	0	0	0	1	0	1	0	0	0	1	0	$v_{cB1} - v_{bB1} + v_{aB2} - v_{bB2} + v_{aB3} - v_{bB3}$

Tabla 54: Estados válidos de conmutación de cada convertidor matricial 3x1

				B_1						B_2						B_3				
Fase	Est. conmut.	S_1	S_2	S_3	S_4	S_5	S_6	S_1	S_2	S_3	S_4	S_5	S_6	S_1	S_2	S_3	S_4	S_5	S_6	v_{xn}
В	5 - 1 - 1	0	0	1	1	0	0	0	0	1	0	0	1	0	0	1	0	0	1	$v_{cB1} - v_{aB1}$
В	5 - 1 - 2	0	0	1	1	0	0	0	0	1	0	0	1	0	1	0	0	1	0	$v_{cB1} - v_{aB1}$
В	5 - 1 - 3	0	0	1	1	0	0	0	0	1	0	0	1	1	0	0	1	0	0	$v_{cB1} - v_{aB1}$
В	5 - 1 - 4	0	0	1	1	0	0	0	0	1	0	0	1	0	0	1	0	1	0	$v_{cB1} - v_{aB1} + v_{cB3} - v_{bB3}$
В	5 - 1 - 5	0	0	1	1	0	0	0	0	1	0	0	1	0	0	1	1	0	0	$v_{cB1} - v_{aB1} + v_{cB3} - v_{aB3}$
В	5 - 1 - 6	0	0	1	1	0	0	0	0	1	0	0	1	0	1	0	0	0	1	$v_{cB1} - v_{aB1} + v_{bB3} - v_{cB3}$
В	5 - 1 - 7	0	0	1	1	0	0	0	0	1	0	0	1	0	1	0	1	0	0	$v_{cB1} - v_{aB1} + v_{bB3} - v_{aB3}$
В	5 - 1 - 8	0	0	1	1	0	0	0	0	1	0	0	1	1	0	0	0	0	1	$v_{cB1} - v_{aB1} + v_{aB3} - v_{cB3}$
В	5 - 1 - 9	0	0	1	1	0	0	0	0	1	0	0	1	1	0	0	0	1	0	$v_{cB1} - v_{aB1} + v_{aB3} - v_{bB3}$
В	5 - 2 - 1	0	0	1	1	0	0	0	1	0	0	1	0	0	0	1	0	0	1	$v_{cB1} - v_{aB1}$
В	5 - 2 - 2	0	0	1	1	0	0	0	1	0	0	1	0	0	1	0	0	1	0	$v_{cB1} - v_{aB1}$
В	5 - 2 - 3	0	0	1	1	0	0	0	1	0	0	1	0	1	0	0	1	0	0	$v_{cB1} - v_{aB1}$
В	5 - 2 - 4	0	0	1	1	0	0	0	1	0	0	1	0	0	0	1	0	1	0	$v_{cB1} - v_{aB1} + v_{cB3} - v_{bB3}$
В	5 - 2 - 5	0	0	1	1	0	0	0	1	0	0	1	0	0	0	1	1	0	0	$v_{cB1} - v_{aB1} + v_{cB3} - v_{aB3}$
В	5 - 2 - 6	0	0	1	1	0	0	0	1	0	0	1	0	0	1	0	0	0	1	$v_{cB1} - v_{aB1} + v_{bB3} - v_{cB3}$
В	5 - 2 - 7	0	0	1	1	0	0	0	1	0	0	1	0	0	1	0	1	0	0	$v_{cB1} - v_{aB1} + v_{bB3} - v_{aB3}$
В	5 - 2 - 8	0	0	1	1	0	0	0	1	0	0	1	0	1	0	0	0	0	1	$v_{cB1} - v_{aB1} + v_{aB3} - v_{cB3}$
В	5 - 2 - 9	0	0	1	1	0	0	0	1	0	0	1	0	1	0	0	0	1	0	$v_{cB1} - v_{aB1} + v_{aB3} - v_{bB3}$
В	5 - 3 - 1	0	0	1	1	0	0	1	0	0	1	0	0	0	0	1	0	0	1	$v_{cB1} - v_{aB1}$
В	5 - 3 - 2	0	0	1	1	0	0	1	0	0	1	0	0	0	1	0	0	1	0	$v_{cB1} - v_{aB1}$
В	5 - 3 - 3	0	0	1	1	0	0	1	0	0	1	0	0	1	0	0	1	0	0	$v_{cB1} - v_{aB1}$
В	5 - 3 - 4	0	0	1	1	0	0	1	0	0	1	0	0	0	0	1	0	1	0	$v_{cB1} - v_{aB1} + v_{cB3} - v_{bB3}$
В	5 - 3 - 5	0	0	1	1	0	0	1	0	0	1	0	0	0	0	1	1	0	0	$v_{cB1} - v_{aB1} + v_{cB3} - v_{aB3}$
В	5 - 3 - 6	0	0	1	1	0	0	1	0	0	1	0	0	0	1	0	0	0	1	$v_{cB1} - v_{aB1} + v_{bB3} - v_{cB3}$
В	5 - 3 - 7	0	0	1	1	0	0	1	0	0	1	0	0	0	1	0	1	0	0	$v_{cB1} - v_{aB1} + v_{bB3} - v_{aB3}$
В	5 - 3 - 8	0	0	1	1	0	0	1	0	0	1	0	0	1	0	0	0	0	1	$v_{cB1} - v_{aB1} + v_{aB3} - v_{cB3}$
В	5 - 3 - 9	0	0	1	1	0	0	1	0	0	1	0	0	1	0	0	0	1	0	$v_{cB1} - v_{aB1} + v_{aB3} - v_{bB3}$

Tabla 55: Estados válidos de conmutación de cada convertidor matricial 3x1

				B_1						B_2						B_3				
Fase	Est. conmut.	S_1	S_2	S_3	S_4	S_5	S_6	S_1	S_2	S_3	S_4	S_5	S_6	S_1	S_2	S_3	S_4	S_5	S_6	v_{xn}
В	5 - 4 - 1	0	0	1	1	0	0	0	0	1	0	1	0	0	0	1	0	0	1	$v_{cB1} - v_{aB1} + v_{cB2} - v_{bB2}$
В	5 - 4 - 2	0	0	1	1	0	0	0	0	1	0	1	0	0	1	0	0	1	0	$v_{cB1} - v_{aB1} + v_{cB2} - v_{bB2}$
В	5 - 4 - 3	0	0	1	1	0	0	0	0	1	0	1	0	1	0	0	1	0	0	$v_{cB1} - v_{aB1} + v_{cB2} - v_{bB2}$
В	5 - 4 - 4	0	0	1	1	0	0	0	0	1	0	1	0	0	0	1	0	1	0	$v_{cB1} - v_{aB1} + v_{cB2} - v_{bB2} + v_{cB3} - v_{bB3}$
В	5 - 4 - 5	0	0	1	1	0	0	0	0	1	0	1	0	0	0	1	1	0	0	$v_{cB1} - v_{aB1} + v_{cB2} - v_{bB2} + v_{cB3} - v_{aB3}$
В	5 - 4 - 6	0	0	1	1	0	0	0	0	1	0	1	0	0	1	0	0	0	1	$v_{cB1} - v_{aB1} + v_{cB2} - v_{bB2} + v_{bB3} - v_{cB3}$
В	5 - 4 - 7	0	0	1	1	0	0	0	0	1	0	1	0	0	1	0	1	0	0	$v_{cB1} - v_{aB1} + v_{cB2} - v_{bB2} + v_{bB3} - v_{aB3}$
В	5 - 4 - 8	0	0	1	1	0	0	0	0	1	0	1	0	1	0	0	0	0	1	$v_{cB1} - v_{aB1} + v_{cB2} - v_{bB2} + v_{aB3} - v_{cB3}$
В	5 - 4 - 9	0	0	1	1	0	0	0	0	1	0	1	0	1	0	0	0	1	0	$v_{cB1} - v_{aB1} + v_{cB2} - v_{bB2} + v_{aB3} - v_{bB3}$
В	5 - 5 - 1	0	0	1	1	0	0	0	0	1	1	0	0	0	0	1	0	0	1	$v_{cB1} - v_{aB1} + v_{cB2} - v_{aB2}$
В	5 - 5 - 2	0	0	1	1	0	0	0	0	1	1	0	0	0	1	0	0	1	0	$v_{cB1} - v_{aB1} + v_{cB2} - v_{aB2}$
В	5 - 5 - 3	0	0	1	1	0	0	0	0	1	1	0	0	1	0	0	1	0	0	$v_{cB1} - v_{aB1} + v_{cB2} - v_{aB2}$
В	5 - 5 - 4	0	0	1	1	0	0	0	0	1	1	0	0	0	0	1	0	1	0	$v_{cB1} - v_{aB1} + v_{cB2} - v_{aB2} + v_{cB3} - v_{bB3}$
В	5 - 5 - 5	0	0	1	1	0	0	0	0	1	1	0	0	0	0	1	1	0	0	$v_{cB1} - v_{aB1} + v_{cB2} - v_{aB2} + v_{cB3} - v_{aB3}$
В	5 - 5 - 6	0	0	1	1	0	0	0	0	1	1	0	0	0	1	0	0	0	1	$v_{cB1} - v_{aB1} + v_{cB2} - v_{aB2} + v_{bB3} - v_{cB3}$
В	5 - 5 - 7	0	0	1	1	0	0	0	0	1	1	0	0	0	1	0	1	0	0	$v_{cB1} - v_{aB1} + v_{cB2} - v_{aB2} + v_{bB3} - v_{aB3}$
В	5 - 5 - 8	0	0	1	1	0	0	0	0	1	1	0	0	1	0	0	0	0	1	$v_{cB1} - v_{aB1} + v_{cB2} - v_{aB2} + v_{aB3} - v_{cB3}$
В	5 - 5 - 9	0	0	1	1	0	0	0	0	1	1	0	0	1	0	0	0	1	0	$v_{cB1} - v_{aB1} + v_{cB2} - v_{aB2} + v_{aB3} - v_{bB3}$
В	5 - 6 - 1	0	0	1	1	0	0	0	1	0	0	0	1	0	0	1	0	0	1	$v_{cB1} - v_{aB1} + v_{bB2} - v_{cB2}$
В	5 - 6 - 2	0	0	1	1	0	0	0	1	0	0	0	1	0	1	0	0	1	0	$v_{cB1} - v_{aB1} + v_{bB2} - v_{cB2}$
В	5 - 6 - 3	0	0	1	1	0	0	0	1	0	0	0	1	1	0	0	1	0	0	$v_{cB1} - v_{aB1} + v_{bB2} - v_{cB2}$
В	5 - 6 - 4	0	0	1	1	0	0	0	1	0	0	0	1	0	0	1	0	1	0	$v_{cB1} - v_{aB1} + v_{bB2} - v_{cB2} + v_{cB3} - v_{bB3}$
В	5 - 6 - 5	0	0	1	1	0	0	0	1	0	0	0	1	0	0	1	1	0	0	$v_{cB1} - v_{aB1} + v_{bB2} - v_{cB2} + v_{cB3} - v_{aB3}$
В	5 - 6 - 6	0	0	1	1	0	0	0	1	0	0	0	1	0	1	0	0	0	1	$v_{cB1} - v_{aB1} + v_{bB2} - v_{cB2} + v_{bB3} - v_{cB3}$
В	5 - 6 - 7	0	0	1	1	0	0	0	1	0	0	0	1	0	1	0	1	0	0	$v_{cB1} - v_{aB1} + v_{bB2} - v_{cB2} + v_{bB3} - v_{aB3}$
В	5 - 6 - 8	0	0	1	1	0	0	0	1	0	0	0	1	1	0	0	0	0	1	$v_{cB1} - v_{aB1} + v_{bB2} - v_{cB2} + v_{aB3} - v_{cB3}$
В	5 - 6 - 9	0	0	1	1	0	0	0	1	0	0	0	1	1	0	0	0	1	0	$v_{cB1} - v_{aB1} + v_{bB2} - v_{cB2} + v_{aB2} - v_{bB2}$

Tabla 56: Estados válidos de conmutación de cada convertidor matricial 3x1

				B_1						B_2						B_3				
Fase	Est. conmut.	S_1	S_2	S_3	S_4	S_5	S_6	S_1	S_2	S_3	S_4	S_5	S_6	S_1	S_2	S_3	S_4	S_5	S_6	v_{xn}
В	5 - 7 - 1	0	0	1	1	0	0	0	1	0	1	0	0	0	0	1	0	0	1	$v_{cB1} - v_{aB1} + v_{bB2} - v_{aB2}$
В	5 - 7 - 2	0	0	1	1	0	0	0	1	0	1	0	0	0	1	0	0	1	0	$v_{cB1} - v_{aB1} + v_{bB2} - v_{aB2}$
В	5 - 7 - 3	0	0	1	1	0	0	0	1	0	1	0	0	1	0	0	1	0	0	$v_{cB1} - v_{aB1} + v_{bB2} - v_{aB2}$
В	5 - 7 - 4	0	0	1	1	0	0	0	1	0	1	0	0	0	0	1	0	1	0	$v_{cB1} - v_{aB1} + v_{bB2} - v_{aB2} + v_{cB3} - v_{bB3}$
В	5 - 7 - 5	0	0	1	1	0	0	0	1	0	1	0	0	0	0	1	1	0	0	$v_{cB1} - v_{aB1} + v_{bB2} - v_{aB2} + v_{cB3} - v_{aB3}$
В	5 - 7 - 6	0	0	1	1	0	0	0	1	0	1	0	0	0	1	0	0	0	1	$v_{cB1} - v_{aB1} + v_{bB2} - v_{aB2} + v_{bB3} - v_{cB3}$
В	5 - 7 - 7	0	0	1	1	0	0	0	1	0	1	0	0	0	1	0	1	0	0	$v_{cB1} - v_{aB1} + v_{bB2} - v_{aB2} + v_{bB3} - v_{aB3}$
В	5 - 7 - 8	0	0	1	1	0	0	0	1	0	1	0	0	1	0	0	0	0	1	$v_{cB1} - v_{aB1} + v_{bB2} - v_{aB2} + v_{aB3} - v_{cB3}$
В	5 - 7 - 9	0	0	1	1	0	0	0	1	0	1	0	0	1	0	0	0	1	0	$v_{cB1} - v_{aB1} + v_{bB2} - v_{aB2} + v_{aB3} - v_{bB3}$
В	5 - 8 - 1	0	0	1	1	0	0	1	0	0	0	0	1	0	0	1	0	0	1	$v_{cB1} - v_{aB1} + v_{aB2} - v_{cB2}$
В	5 - 8 - 2	0	0	1	1	0	0	1	0	0	0	0	1	0	1	0	0	1	0	$v_{cB1} - v_{aB1} + v_{aB2} - v_{cB2}$
В	5 - 8 - 3	0	0	1	1	0	0	1	0	0	0	0	1	1	0	0	1	0	0	$v_{cB1} - v_{aB1} + v_{aB2} - v_{cB2}$
В	5 - 8 - 4	0	0	1	1	0	0	1	0	0	0	0	1	0	0	1	0	1	0	$v_{cB1} - v_{aB1} + v_{aB2} - v_{cB2} + v_{cB3} - v_{bB3}$
В	5 - 8 - 5	0	0	1	1	0	0	1	0	0	0	0	1	0	0	1	1	0	0	$v_{cB1} - v_{aB1} + v_{aB2} - v_{cB2} + v_{cB3} - v_{aB3}$
В	5 - 8 - 6	0	0	1	1	0	0	1	0	0	0	0	1	0	1	0	0	0	1	$v_{cB1} - v_{aB1} + v_{aB2} - v_{cB2} + v_{bB3} - v_{cB3}$
В	5 - 8 - 7	0	0	1	1	0	0	1	0	0	0	0	1	0	1	0	1	0	0	$v_{cB1} - v_{aB1} + v_{aB2} - v_{cB2} + v_{bB3} - v_{aB3}$
В	5 - 8 - 8	0	0	1	1	0	0	1	0	0	0	0	1	1	0	0	0	0	1	$v_{cB1} - v_{aB1} + v_{aB2} - v_{cB2} + v_{aB3} - v_{cB3}$
В	5 - 8 - 9	0	0	1	1	0	0	1	0	0	0	0	1	1	0	0	0	1	0	$v_{cB1} - v_{aB1} + v_{aB2} - v_{cB2} + v_{aB3} - v_{bB3}$
В	5 - 9 - 1	0	0	1	1	0	0	1	0	0	0	1	0	0	0	1	0	0	1	$v_{cB1} - v_{aB1} + v_{aB2} - v_{bB2}$
В	5 - 9 - 2	0	0	1	1	0	0	1	0	0	0	1	0	0	1	0	0	1	0	$v_{cB1} - v_{aB1} + v_{aB2} - v_{bB2}$
В	5 - 9 - 3	0	0	1	1	0	0	1	0	0	0	1	0	1	0	0	1	0	0	$v_{cB1} - v_{aB1} + v_{aB2} - v_{bB2}$
В	5 - 9 - 4	0	0	1	1	0	0	1	0	0	0	1	0	0	0	1	0	1	0	$v_{cB1} - v_{aB1} + v_{aB2} - v_{bB2} + v_{cB3} - v_{bB3}$
В	5 - 9 - 5	0	0	1	1	0	0	1	0	0	0	1	0	0	0	1	1	0	0	$v_{cB1} - v_{aB1} + v_{aB2} - v_{bB2} + v_{cB3} - v_{aB3}$
В	5 - 9 - 6	0	0	1	1	0	0	1	0	0	0	1	0	0	1	0	0	0	1	$v_{cB1} - v_{aB1} + v_{aB2} - v_{bB2} + v_{bB3} - v_{cB3}$
В	5 - 9 - 7	0	0	1	1	0	0	1	0	0	0	1	0	0	1	0	1	0	0	$v_{cB1} - v_{aB1} + v_{aB2} - v_{bB2} + v_{bB3} - v_{aB3}$
в	5 - 9 - 8	0	0	1	1	0	0	1	0	0	0	1	0	1	0	0	0	0	1	$v_{cB1} - v_{aB1} + v_{aB2} - v_{bB2} + v_{aB3} - v_{cB3}$
В	5 - 9 - 9	0	0	1	1	0	0	1	0	0	0	1	0	1	0	0	0	1	0	$v_{cB1} - v_{aB1} + v_{aB2} - v_{bB2} + v_{aB3} - v_{bB3}$

Tabla 57: Estados válidos de conmutación de cada convertidor matricial 3x1

				B_1						B_2						B_{2}				
Fase	Est. conmut.	S_1	S_2	S_3	S_4	S_5	S_6	S_1	S_2	S_3	S_4	S_5	S_6	S_1	S_2	S_3	S_4	S_5	S_6	v_{xn}
В	6 - 1 - 1	0	1	0	0	0	1	0	0	1	0	0	1	0	0	1	0	0	1	$v_{bB1} - v_{cB1}$
В	6 - 1 - 2	0	1	0	0	0	1	0	0	1	0	0	1	0	1	0	0	1	0	$v_{bB1} - v_{cB1}$
В	6 - 1 - 3	0	1	0	0	0	1	0	0	1	0	0	1	1	0	0	1	0	0	$v_{bB1} - v_{cB1}$
В	6 - 1 - 4	0	1	0	0	0	1	0	0	1	0	0	1	0	0	1	0	1	0	$v_{bB1} - v_{cB1} + v_{cB3} - v_{bB3}$
В	6 - 1 - 5	0	1	0	0	0	1	0	0	1	0	0	1	0	0	1	1	0	0	$v_{bB1} - v_{cB1} + v_{cB3} - v_{aB3}$
В	6 - 1 - 6	0	1	0	0	0	1	0	0	1	0	0	1	0	1	0	0	0	1	$v_{bB1} - v_{cB1} + v_{bB3} - v_{cB3}$
В	6 - 1 - 7	0	1	0	0	0	1	0	0	1	0	0	1	0	1	0	1	0	0	$v_{bB1} - v_{cB1} + v_{bB3} - v_{aB3}$
В	6 - 1 - 8	0	1	0	0	0	1	0	0	1	0	0	1	1	0	0	0	0	1	$v_{bB1} - v_{cB1} + v_{aB3} - v_{cB3}$
В	6 - 1 - 9	0	1	0	0	0	1	0	0	1	0	0	1	1	0	0	0	1	0	$v_{bB1} - v_{cB1} + v_{aB3} - v_{bB3}$
В	6 - 2 - 1	0	1	0	0	0	1	0	1	0	0	1	0	0	0	1	0	0	1	$v_{bB1} - v_{cB1}$
В	6 - 2 - 2	0	1	0	0	0	1	0	1	0	0	1	0	0	1	0	0	1	0	$v_{bB1} - v_{cB1}$
В	6 - 2 - 3	0	1	0	0	0	1	0	1	0	0	1	0	1	0	0	1	0	0	$v_{bB1} - v_{cB1}$
В	6 - 2 - 4	0	1	0	0	0	1	0	1	0	0	1	0	0	0	1	0	1	0	$v_{bB1} - v_{cB1} + v_{cB3} - v_{bB3}$
В	6 - 2 - 5	0	1	0	0	0	1	0	1	0	0	1	0	0	0	1	1	0	0	$v_{bB1} - v_{cB1} + v_{cB3} - v_{aB3}$
В	6 - 2 - 6	0	1	0	0	0	1	0	1	0	0	1	0	0	1	0	0	0	1	$v_{bB1} - v_{cB1} + v_{bB3} - v_{cB3}$
В	6 - 2 - 7	0	1	0	0	0	1	0	1	0	0	1	0	0	1	0	1	0	0	$v_{bB1} - v_{cB1} + v_{bB3} - v_{aB3}$
В	6 - 2 - 8	0	1	0	0	0	1	0	1	0	0	1	0	1	0	0	0	0	1	$v_{bB1} - v_{cB1} + v_{aB3} - v_{cB3}$
В	6 - 2 - 9	0	1	0	0	0	1	0	1	0	0	1	0	1	0	0	0	1	0	$v_{bB1} - v_{cB1} + v_{aB3} - v_{bB3}$
В	6 - 3 - 1	0	1	0	0	0	1	1	0	0	1	0	0	0	0	1	0	0	1	$v_{bB1} - v_{cB1}$
В	6 - 3 - 2	0	1	0	0	0	1	1	0	0	1	0	0	0	1	0	0	1	0	$v_{bB1} - v_{cB1}$
В	6 - 3 - 3	0	1	0	0	0	1	1	0	0	1	0	0	1	0	0	1	0	0	$v_{bB1} - v_{cB1}$
В	6 - 3 - 4	0	1	0	0	0	1	1	0	0	1	0	0	0	0	1	0	1	0	$v_{bB1} - v_{cB1} + v_{cB3} - v_{bB3}$
В	6 - 3 - 5	0	1	0	0	0	1	1	0	0	1	0	0	0	0	1	1	0	0	$v_{bB1} - v_{cB1} + v_{cB3} - v_{aB3}$
В	6 - 3 - 6	0	1	0	0	0	1	1	0	0	1	0	0	0	1	0	0	0	1	$v_{bB1} - v_{cB1} + v_{bB3} - v_{cB3}$
В	6 - 3 - 7	0	1	0	0	0	1	1	0	0	1	0	0	0	1	0	1	0	0	$v_{bB1} - v_{cB1} + v_{bB3} - v_{aB3}$
В	6 - 3 - 8	0	1	0	0	0	1	1	0	0	1	0	0	1	0	0	0	0	1	$v_{bB1} - v_{cB1} + v_{aB3} - v_{cB3}$
В	6 - 3 - 9	0	1	0	0	0	1	1	0	0	1	0	0	1	0	0	0	1	0	$v_{bB1} - v_{cB1} + v_{aB3} - v_{bB3}$

Tabla 58: Estados válidos de conmutación de cada convertidor matricial 3x1

				B_1						B_2						B_3				
Fase	Est. conmut.	S_1	S_2	S_3	S_4	S_5	S_6	S_1	S_2	S_3	S_4	S_5	S_6	S_1	S_2	S_3	S_4	S_5	S_6	v_{xn}
В	6 - 4 - 1	0	1	0	0	0	1	0	0	1	0	1	0	0	0	1	0	0	1	$v_{bB1} - v_{cB1} + v_{cB2} - v_{bB2}$
в	6 - 4 - 2	0	1	0	0	0	1	0	0	1	0	1	0	0	1	0	0	1	0	$v_{bB1} - v_{cB1} + v_{cB2} - v_{bB2}$
В	6 - 4 - 3	0	1	0	0	0	1	0	0	1	0	1	0	1	0	0	1	0	0	$v_{bB1} - v_{cB1} + v_{cB2} - v_{bB2}$
В	6 - 4 - 4	0	1	0	0	0	1	0	0	1	0	1	0	0	0	1	0	1	0	$v_{bB1} - v_{cB1} + v_{cB2} - v_{bB2} + v_{cB3} - v_{bB3}$
В	6 - 4 - 5	0	1	0	0	0	1	0	0	1	0	1	0	0	0	1	1	0	0	$v_{bB1} - v_{cB1} + v_{cB2} - v_{bB2} + v_{cB3} - v_{aB3}$
В	6 - 4 - 6	0	1	0	0	0	1	0	0	1	0	1	0	0	1	0	0	0	1	$v_{bB1} - v_{cB1} + v_{cB2} - v_{bB2} + v_{bB3} - v_{cB3}$
В	6 - 4 - 7	0	1	0	0	0	1	0	0	1	0	1	0	0	1	0	1	0	0	$v_{bB1} - v_{cB1} + v_{cB2} - v_{bB2} + v_{bB3} - v_{aB3}$
В	6 - 4 - 8	0	1	0	0	0	1	0	0	1	0	1	0	1	0	0	0	0	1	$v_{bB1} - v_{cB1} + v_{cB2} - v_{bB2} + v_{aB3} - v_{cB3}$
В	6 - 4 - 9	0	1	0	0	0	1	0	0	1	0	1	0	1	0	0	0	1	0	$v_{bB1} - v_{cB1} + v_{cB2} - v_{bB2} + v_{aB3} - v_{bB3}$
В	6 - 5 - 1	0	1	0	0	0	1	0	0	1	1	0	0	0	0	1	0	0	1	$v_{bB1} - v_{cB1} + v_{cB2} - v_{aB2}$
В	6 - 5 - 2	0	1	0	0	0	1	0	0	1	1	0	0	0	1	0	0	1	0	$v_{bB1} - v_{cB1} + v_{cB2} - v_{aB2}$
В	6 - 5 - 3	0	1	0	0	0	1	0	0	1	1	0	0	1	0	0	1	0	0	$v_{bB1} - v_{cB1} + v_{cB2} - v_{aB2}$
В	6 - 5 - 4	0	1	0	0	0	1	0	0	1	1	0	0	0	0	1	0	1	0	$v_{bB1} - v_{cB1} + v_{cB2} - v_{aB2} + v_{cB3} - v_{bB3}$
В	6 - 5 - 5	0	1	0	0	0	1	0	0	1	1	0	0	0	0	1	1	0	0	$v_{bB1} - v_{cB1} + v_{cB2} - v_{aB2} + v_{cB3} - v_{aB3}$
В	6 - 5 - 6	0	1	0	0	0	1	0	0	1	1	0	0	0	1	0	0	0	1	$v_{bB1} - v_{cB1} + v_{cB2} - v_{aB2} + v_{bB3} - v_{cB3}$
В	6 - 5 - 7	0	1	0	0	0	1	0	0	1	1	0	0	0	1	0	1	0	0	$v_{bB1} - v_{cB1} + v_{cB2} - v_{aB2} + v_{bB3} - v_{aB3}$
В	6 - 5 - 8	0	1	0	0	0	1	0	0	1	1	0	0	1	0	0	0	0	1	$v_{bB1} - v_{cB1} + v_{cB2} - v_{aB2} + v_{aB3} - v_{cB3}$
В	6 - 5 - 9	0	1	0	0	0	1	0	0	1	1	0	0	1	0	0	0	1	0	$v_{bB1} - v_{cB1} + v_{cB2} - v_{aB2} + v_{aB3} - v_{bB3}$
В	6 - 6 - 1	0	1	0	0	0	1	0	1	0	0	0	1	0	0	1	0	0	1	$v_{bB1} - v_{cB1} + v_{bB2} - v_{cB2}$
В	6 - 6 - 2	0	1	0	0	0	1	0	1	0	0	0	1	0	1	0	0	1	0	$v_{bB1} - v_{cB1} + v_{bB2} - v_{cB2}$
В	6 - 6 - 3	0	1	0	0	0	1	0	1	0	0	0	1	1	0	0	1	0	0	$v_{bB1} - v_{cB1} + v_{bB2} - v_{cB2}$
В	6 - 6 - 4	0	1	0	0	0	1	0	1	0	0	0	1	0	0	1	0	1	0	$v_{bB1} - v_{cB1} + v_{bB2} - v_{cB2} + v_{cB3} - v_{bB3}$
В	6 - 6 - 5	0	1	0	0	0	1	0	1	0	0	0	1	0	0	1	1	0	0	$v_{bB1} - v_{cB1} + v_{bB2} - v_{cB2} + v_{cB3} - v_{aB3}$
В	6 - 6 - 6	0	1	0	0	0	1	0	1	0	0	0	1	0	1	0	0	0	1	$v_{bB1} - v_{cB1} + v_{bB2} - v_{cB2} + v_{bB3} - v_{cB3}$
В	6 - 6 - 7	0	1	0	0	0	1	0	1	0	0	0	1	0	1	0	1	0	0	$v_{bB1} - v_{cB1} + v_{bB2} - v_{cB2} + v_{bB3} - v_{aB3}$
В	6 - 6 - 8	0	1	0	0	0	1	0	1	0	0	0	1	1	0	0	0	0	1	$v_{bB1} - v_{cB1} + v_{bB2} - v_{cB2} + v_{aB3} - v_{cB3}$
В	6 - 6 - 9	0	1	0	0	0	1	0	1	0	0	0	1	1	0	0	0	1	0	$v_{bB1} - v_{cB1} + v_{bB2} - v_{cB2} + v_{aB2} - v_{bB2}$

Tabla 59: Estados válidos de conmutación de cada convertidor matricial 3x1

				B_1						B_2						B_3				
Fase	Est. conmut.	S_1	S_2	S_3	S_4	S_5	S_6	S_1	S_2	S_3	S_4	S_5	S_6	S_1	S_2	S_3	S_4	S_5	S_6	v_{xn}
В	6 - 7 - 1	0	1	0	0	0	1	0	1	0	1	0	0	0	0	1	0	0	1	$v_{bB1} - v_{cB1} + v_{bB2} - v_{aB2}$
В	6 - 7 - 2	0	1	0	0	0	1	0	1	0	1	0	0	0	1	0	0	1	0	$v_{bB1} - v_{cB1} + v_{bB2} - v_{aB2}$
В	6 - 7 - 3	0	1	0	0	0	1	0	1	0	1	0	0	1	0	0	1	0	0	$v_{bB1} - v_{cB1} + v_{bB2} - v_{aB2}$
В	6 - 7 - 4	0	1	0	0	0	1	0	1	0	1	0	0	0	0	1	0	1	0	$v_{bB1} - v_{cB1} + v_{bB2} - v_{aB2} + v_{cB3} - v_{bB3}$
В	6 - 7 - 5	0	1	0	0	0	1	0	1	0	1	0	0	0	0	1	1	0	0	$v_{bB1} - v_{cB1} + v_{bB2} - v_{aB2} + v_{cB3} - v_{aB3}$
В	6 - 7 - 6	0	1	0	0	0	1	0	1	0	1	0	0	0	1	0	0	0	1	$v_{bB1} - v_{cB1} + v_{bB2} - v_{aB2} + v_{bB3} - v_{cB3}$
В	6 - 7 - 7	0	1	0	0	0	1	0	1	0	1	0	0	0	1	0	1	0	0	$v_{bB1} - v_{cB1} + v_{bB2} - v_{aB2} + v_{bB3} - v_{aB3}$
В	6 - 7 - 8	0	1	0	0	0	1	0	1	0	1	0	0	1	0	0	0	0	1	$v_{bB1} - v_{cB1} + v_{bB2} - v_{aB2} + v_{aB3} - v_{cB3}$
В	6 - 7 - 9	0	1	0	0	0	1	0	1	0	1	0	0	1	0	0	0	1	0	$v_{bB1} - v_{cB1} + v_{bB2} - v_{aB2} + v_{aB3} - v_{bB3}$
В	6 - 8 - 1	0	1	0	0	0	1	1	0	0	0	0	1	0	0	1	0	0	1	$v_{bB1} - v_{cB1} + v_{aB2} - v_{cB2}$
В	6 - 8 - 2	0	1	0	0	0	1	1	0	0	0	0	1	0	1	0	0	1	0	$v_{bB1} - v_{cB1} + v_{aB2} - v_{cB2}$
В	6 - 8 - 3	0	1	0	0	0	1	1	0	0	0	0	1	1	0	0	1	0	0	$v_{bB1} - v_{cB1} + v_{aB2} - v_{cB2}$
В	6 - 8 - 4	0	1	0	0	0	1	1	0	0	0	0	1	0	0	1	0	1	0	$v_{bB1} - v_{cB1} + v_{aB2} - v_{cB2} + v_{cB3} - v_{bB3}$
В	6 - 8 - 5	0	1	0	0	0	1	1	0	0	0	0	1	0	0	1	1	0	0	$v_{bB1} - v_{cB1} + v_{aB2} - v_{cB2} + v_{cB3} - v_{aB3}$
В	6 - 8 - 6	0	1	0	0	0	1	1	0	0	0	0	1	0	1	0	0	0	1	$v_{bB1} - v_{cB1} + v_{aB2} - v_{cB2} + v_{bB3} - v_{cB3}$
В	6 - 8 - 7	0	1	0	0	0	1	1	0	0	0	0	1	0	1	0	1	0	0	$v_{bB1} - v_{cB1} + v_{aB2} - v_{cB2} + v_{bB3} - v_{aB3}$
В	6 - 8 - 8	0	1	0	0	0	1	1	0	0	0	0	1	1	0	0	0	0	1	$v_{bB1} - v_{cB1} + v_{aB2} - v_{cB2} + v_{aB3} - v_{cB3}$
В	6 - 8 - 9	0	1	0	0	0	1	1	0	0	0	0	1	1	0	0	0	1	0	$v_{bB1} - v_{cB1} + v_{aB2} - v_{cB2} + v_{aB3} - v_{bB3}$
В	6 - 9 - 1	0	1	0	0	0	1	1	0	0	0	1	0	0	0	1	0	0	1	$v_{bB1} - v_{cB1} + v_{aB2} - v_{bB2}$
В	6 - 9 - 2	0	1	0	0	0	1	1	0	0	0	1	0	0	1	0	0	1	0	$v_{bB1} - v_{cB1} + v_{aB2} - v_{bB2}$
В	6 - 9 - 3	0	1	0	0	0	1	1	0	0	0	1	0	1	0	0	1	0	0	$v_{bB1} - v_{cB1} + v_{aB2} - v_{bB2}$
В	6 - 9 - 4	0	1	0	0	0	1	1	0	0	0	1	0	0	0	1	0	1	0	$v_{bB1} - v_{cB1} + v_{aB2} - v_{bB2} + v_{cB3} - v_{bB3}$
В	6 - 9 - 5	0	1	0	0	0	1	1	0	0	0	1	0	0	0	1	1	0	0	$v_{bB1} - v_{cB1} + v_{aB2} - v_{bB2} + v_{cB3} - v_{aB3}$
В	6 - 9 - 6	0	1	0	0	0	1	1	0	0	0	1	0	0	1	0	0	0	1	$v_{bB1} - v_{cB1} + v_{aB2} - v_{bB2} + v_{bB3} - v_{cB3}$
В	6 - 9 - 7	0	1	0	0	0	1	1	0	0	0	1	0	0	1	0	1	0	0	$v_{bB1} - v_{cB1} + v_{aB2} - v_{bB2} + v_{bB3} - v_{aB3}$
В	6 - 9 - 8	0	1	0	0	0	1	1	0	0	0	1	0	1	0	0	0	0	1	$v_{bB1} - v_{cB1} + v_{aB2} - v_{bB2} + v_{aB3} - v_{cB3}$
В	6 - 9 - 9	0	1	0	0	0	1	1	0	0	0	1	0	1	0	0	0	1	0	$v_{bB1} - v_{cB1} + v_{aB2} - v_{bB2} + v_{aB3} - v_{bB3}$

Tabla 60: Estados válidos de conmutación de cada convertidor matricial 3x1

				B_1						B_2						B_3				
Fase	Est. conmut.	S_1	S_2	S_3	S_4	S_5	S_6	S_1	S_2	S_3	S_4	S_5	S_6	S_1	S_2	S_3	S_4	S_5	S_6	v_{xn}
В	7 - 1 - 1	1	0	0	1	0	0	0	0	1	0	0	1	0	0	1	0	0	1	$v_{bB1} - v_{aB1}$
В	7 - 1 - 2	1	0	0	1	0	0	0	0	1	0	0	1	0	1	0	0	1	0	$v_{bB1} - v_{aB1}$
В	7 - 1 - 3	1	0	0	1	0	0	0	0	1	0	0	1	1	0	0	1	0	0	$v_{bB1} - v_{aB1}$
В	7 - 1 - 4	1	0	0	1	0	0	0	0	1	0	0	1	0	0	1	0	1	0	$v_{bB1} - v_{aB1} + v_{cB3} - v_{bB3}$
В	7 - 1 - 5	1	0	0	1	0	0	0	0	1	0	0	1	0	0	1	1	0	0	$v_{bB1} - v_{aB1} + v_{cB3} - v_{aB3}$
В	7 - 1 - 6	1	0	0	1	0	0	0	0	1	0	0	1	0	1	0	0	0	1	$v_{bB1} - v_{aB1} + v_{bB3} - v_{cB3}$
В	7 - 1 - 7	1	0	0	1	0	0	0	0	1	0	0	1	0	1	0	1	0	0	$v_{bB1} - v_{aB1} + v_{bB3} - v_{aB3}$
В	7 - 1 - 8	1	0	0	1	0	0	0	0	1	0	0	1	1	0	0	0	0	1	$v_{bB1} - v_{aB1} + v_{aB3} - v_{cB3}$
В	7 - 1 - 9	1	0	0	1	0	0	0	0	1	0	0	1	1	0	0	0	1	0	$v_{bB1} - v_{aB1} + v_{aB3} - v_{bB3}$
В	7 - 2 - 1	1	0	0	1	0	0	0	1	0	0	1	0	0	0	1	0	0	1	$v_{bB1} - v_{aB1}$
В	7 - 2 - 2	1	0	0	1	0	0	0	1	0	0	1	0	0	1	0	0	1	0	$v_{bB1} - v_{aB1}$
В	7 - 2 - 3	1	0	0	1	0	0	0	1	0	0	1	0	1	0	0	1	0	0	$v_{bB1} - v_{aB1}$
В	7 - 2 - 4	1	0	0	1	0	0	0	1	0	0	1	0	0	0	1	0	1	0	$v_{bB1} - v_{aB1} + v_{cB3} - v_{bB3}$
В	7 - 2 - 5	1	0	0	1	0	0	0	1	0	0	1	0	0	0	1	1	0	0	$v_{bB1} - v_{aB1} + v_{cB3} - v_{aB3}$
В	7 - 2 - 6	1	0	0	1	0	0	0	1	0	0	1	0	0	1	0	0	0	1	$v_{bB1} - v_{aB1} + v_{bB3} - v_{cB3}$
В	7 - 2 - 7	1	0	0	1	0	0	0	1	0	0	1	0	0	1	0	1	0	0	$v_{bB1} - v_{aB1} + v_{bB3} - v_{aB3}$
В	7 - 2 - 8	1	0	0	1	0	0	0	1	0	0	1	0	1	0	0	0	0	1	$v_{bB1} - v_{aB1} + v_{aB3} - v_{cB3}$
В	7 - 2 - 9	1	0	0	1	0	0	0	1	0	0	1	0	1	0	0	0	1	0	$v_{bB1} - v_{aB1} + v_{aB3} - v_{bB3}$
В	7 - 3 - 1	1	0	0	1	0	0	1	0	0	1	0	0	0	0	1	0	0	1	$v_{bB1} - v_{aB1}$
В	7 - 3 - 2	1	0	0	1	0	0	1	0	0	1	0	0	0	1	0	0	1	0	$v_{bB1} - v_{aB1}$
В	7 - 3 - 3	1	0	0	1	0	0	1	0	0	1	0	0	1	0	0	1	0	0	$v_{bB1} - v_{aB1}$
В	7 - 3 - 4	1	0	0	1	0	0	1	0	0	1	0	0	0	0	1	0	1	0	$v_{bB1} - v_{aB1} + v_{cB3} - v_{bB3}$
В	7 - 3 - 5	1	0	0	1	0	0	1	0	0	1	0	0	0	0	1	1	0	0	$v_{bB1} - v_{aB1} + v_{cB3} - v_{aB3}$
В	7 - 3 - 6	1	0	0	1	0	0	1	0	0	1	0	0	0	1	0	0	0	1	$v_{bB1} - v_{aB1} + v_{bB3} - v_{cB3}$
В	7 - 3 - 7	1	0	0	1	0	0	1	0	0	1	0	0	0	1	0	1	0	0	$v_{bB1} - v_{aB1} + v_{bB3} - v_{aB3}$
В	7 - 3 - 8	1	0	0	1	0	0	1	0	0	1	0	0	1	0	0	0	0	1	$v_{bB1} - v_{aB1} + v_{aB3} - v_{cB3}$
В	7 - 3 - 9	1	0	0	1	0	0	1	0	0	1	0	0	1	0	0	0	1	0	$v_{bB1} - v_{aB1} + v_{aB3} - v_{bB3}$

Tabla 61: Estados válidos de conmutación de cada convertidor matricial 3x1

				B_1						B_2						B_3				
Fase	Est. conmut.	S_1	S_2	S_3	S_4	S_5	S_6	S_1	S_2	S_3	S_4	S_5	S_6	S_1	S_2	S_3	S_4	S_5	S_6	v_{xn}
В	7 - 4 - 1	1	0	0	1	0	0	0	0	1	0	1	0	0	0	1	0	0	1	$v_{bB1} - v_{aB1} + v_{cB2} - v_{bB2}$
В	7 - 4 - 2	1	0	0	1	0	0	0	0	1	0	1	0	0	1	0	0	1	0	$v_{bB1} - v_{aB1} + v_{cB2} - v_{bB2}$
В	7 - 4 - 3	1	0	0	1	0	0	0	0	1	0	1	0	1	0	0	1	0	0	$v_{bB1} - v_{aB1} + v_{cB2} - v_{bB2}$
В	7 - 4 - 4	1	0	0	1	0	0	0	0	1	0	1	0	0	0	1	0	1	0	$v_{bB1} - v_{aB1} + v_{cB2} - v_{bB2} + v_{cB3} - v_{bB3}$
В	7 - 4 - 5	1	0	0	1	0	0	0	0	1	0	1	0	0	0	1	1	0	0	$v_{bB1} - v_{aB1} + v_{cB2} - v_{bB2} + v_{cB3} - v_{aB3}$
В	7 - 4 - 6	1	0	0	1	0	0	0	0	1	0	1	0	0	1	0	0	0	1	$v_{bB1} - v_{aB1} + v_{cB2} - v_{bB2} + v_{bB3} - v_{cB3}$
В	7 - 4 - 7	1	0	0	1	0	0	0	0	1	0	1	0	0	1	0	1	0	0	$v_{bB1} - v_{aB1} + v_{cB2} - v_{bB2} + v_{bB3} - v_{aB3}$
В	7 - 4 - 8	1	0	0	1	0	0	0	0	1	0	1	0	1	0	0	0	0	1	$v_{bB1} - v_{aB1} + v_{cB2} - v_{bB2} + v_{aB3} - v_{cB3}$
В	7 - 4 - 9	1	0	0	1	0	0	0	0	1	0	1	0	1	0	0	0	1	0	$v_{bB1} - v_{aB1} + v_{cB2} - v_{bB2} + v_{aB3} - v_{bB3}$
В	7 - 5 - 1	1	0	0	1	0	0	0	0	1	1	0	0	0	0	1	0	0	1	$v_{bB1} - v_{aB1} + v_{cB2} - v_{aB2}$
В	7 - 5 - 2	1	0	0	1	0	0	0	0	1	1	0	0	0	1	0	0	1	0	$v_{bB1} - v_{aB1} + v_{cB2} - v_{aB2}$
В	7 - 5 - 3	1	0	0	1	0	0	0	0	1	1	0	0	1	0	0	1	0	0	$v_{bB1} - v_{aB1} + v_{cB2} - v_{aB2} B$
7 - 5 - 4	1	0	0	1	0	0	0	0	1	1	0	0	0	0	1	0	1	0	$v_{bB1} - v_{aB1} + v_{cB2} - v_{aB2} + v_{cB3} - v_{bB3}$	
В	7 - 5 - 5	1	0	0	1	0	0	0	0	1	1	0	0	0	0	1	1	0	0	$v_{bB1} - v_{aB1} + v_{cB2} - v_{aB2} + v_{cB3} - v_{aB3}$
В	7 - 5 - 6	1	0	0	1	0	0	0	0	1	1	0	0	0	1	0	0	0	1	$v_{bB1} - v_{aB1} + v_{cB2} - v_{aB2} + v_{bB3} - v_{cB3}$
В	7 - 5 - 7	1	0	0	1	0	0	0	0	1	1	0	0	0	1	0	1	0	0	$v_{bB1} - v_{aB1} + v_{cB2} - v_{aB2} + v_{bB3} - v_{aB3}$
В	7 - 5 - 8	1	0	0	1	0	0	0	0	1	1	0	0	1	0	0	0	0	1	$v_{bB1} - v_{aB1} + v_{cB2} - v_{aB2} + v_{aB3} - v_{cB3}$
В	7 - 5 - 9	1	0	0	1	0	0	0	0	1	1	0	0	1	0	0	0	1	0	$v_{bB1} - v_{aB1} + v_{cB2} - v_{aB2} + v_{aB3} - v_{bB3}$
В	7 - 6 - 1	1	0	0	1	0	0	0	1	0	0	0	1	0	0	1	0	0	1	$v_{bB1} - v_{aB1} + v_{bB2} - v_{cB2}$
В	7 - 6 - 2	1	0	0	1	0	0	0	1	0	0	0	1	0	1	0	0	1	0	$v_{bB1} - v_{aB1} + v_{bB2} - v_{cB2}$
В	7 - 6 - 3	1	0	0	1	0	0	0	1	0	0	0	1	1	0	0	1	0	0	$v_{bB1} - v_{aB1} + v_{bB2} - v_{cB2}$
В	7 - 6 - 4	1	0	0	1	0	0	0	1	0	0	0	1	0	0	1	0	1	0	$v_{bB1} - v_{aB1} + v_{bB2} - v_{cB2} + v_{cB3} - v_{bB3}$
В	7 - 6 - 5	1	0	0	1	0	0	0	1	0	0	0	1	0	0	1	1	0	0	$v_{bB1} - v_{aB1} + v_{bB2} - v_{cB2} + v_{cB3} - v_{aB3}$
В	7 - 6 - 6	1	0	0	1	0	0	0	1	0	0	0	1	0	1	0	0	0	1	$v_{bB1} - v_{aB1} + v_{bB2} - v_{cB2} + v_{bB3} - v_{cB3}$
В	7 - 6 - 7	1	0	0	1	0	0	0	1	0	0	0	1	0	1	0	1	0	0	$v_{bB1} - v_{aB1} + v_{bB2} - v_{cB2} + v_{bB3} - v_{aB3}$
В	7 - 6 - 8	1	0	0	1	0	0	0	1	0	0	0	1	1	0	0	0	0	1	$v_{bB1} - v_{aB1} + v_{bB2} - v_{cB2} + v_{aB3} - v_{cB3}$
В	7 - 6 - 9	1	0	0	1	0	0	0	1	0	0	0	1	1	0	0	0	1	0	$v_{bB1} - v_{aB1} + v_{bB2} - v_{cB2} + v_{aB2} - v_{bB2}$

Tabla 62: Estados válidos de conmutación de cada convertidor matricial 3x1

				B_1						B_2						B_3				
Fase	Est. conmut.	S_1	S_2	S_3	S_4	S_5	S_6	S_1	S_2	S_3	S_4	S_5	S_6	S_1	S_2	S_3	S_4	S_5	S_6	v_{xn}
В	7 - 7 - 1	1	0	0	1	0	0	0	1	0	1	0	0	0	0	1	0	0	1	$v_{bB1} - v_{aB1} + v_{bB2} - v_{aB2}$
В	7 - 7 - 2	1	0	0	1	0	0	0	1	0	1	0	0	0	1	0	0	1	0	$v_{bB1} - v_{aB1} + v_{bB2} - v_{aB2}$
В	7 - 7 - 3	1	0	0	1	0	0	0	1	0	1	0	0	1	0	0	1	0	0	$v_{bB1} - v_{aB1} + v_{bB2} - v_{aB2}$
В	7 - 7 - 4	1	0	0	1	0	0	0	1	0	1	0	0	0	0	1	0	1	0	$v_{bB1} - v_{aB1} + v_{bB2} - v_{aB2} + v_{cB3} - v_{bB3}$
В	7 - 7 - 5	1	0	0	1	0	0	0	1	0	1	0	0	0	0	1	1	0	0	$v_{bB1} - v_{aB1} + v_{bB2} - v_{aB2} + v_{cB3} - v_{aB3}$
В	7 - 7 - 6	1	0	0	1	0	0	0	1	0	1	0	0	0	1	0	0	0	1	$v_{bB1} - v_{aB1} + v_{bB2} - v_{aB2} + v_{bB3} - v_{cB3}$
В	7 - 7 - 7	1	0	0	1	0	0	0	1	0	1	0	0	0	1	0	1	0	0	$v_{bB1} - v_{aB1} + v_{bB2} - v_{aB2} + v_{bB3} - v_{aB3}$
В	7 - 7 - 8	1	0	0	1	0	0	0	1	0	1	0	0	1	0	0	0	0	1	$v_{bB1} - v_{aB1} + v_{bB2} - v_{aB2} + v_{aB3} - v_{cB3}$
В	7 - 7 - 9	1	0	0	1	0	0	0	1	0	1	0	0	1	0	0	0	1	0	$v_{bB1} - v_{aB1} + v_{bB2} - v_{aB2} + v_{aB3} - v_{bB3}$
В	7 - 8 - 1	1	0	0	1	0	0	1	0	0	0	0	1	0	0	1	0	0	1	$v_{bB1} - v_{aB1} + v_{aB2} - v_{cB2}$
В	7 - 8 - 2	1	0	0	1	0	0	1	0	0	0	0	1	0	1	0	0	1	0	$v_{bB1} - v_{aB1} + v_{aB2} - v_{cB2}$
В	7 - 8 - 3	1	0	0	1	0	0	1	0	0	0	0	1	1	0	0	1	0	0	$v_{bB1} - v_{aB1} + v_{aB2} - v_{cB2}$
В	7 - 8 - 4	1	0	0	1	0	0	1	0	0	0	0	1	0	0	1	0	1	0	$v_{bB1} - v_{aB1} + v_{aB2} - v_{cB2} + v_{cB3} - v_{bB3}$
В	7 - 8 - 5	1	0	0	1	0	0	1	0	0	0	0	1	0	0	1	1	0	0	$v_{bB1} - v_{aB1} + v_{aB2} - v_{cB2} + v_{cB3} - v_{aB3}$
В	7 - 8 - 6	1	0	0	1	0	0	1	0	0	0	0	1	0	1	0	0	0	1	$v_{bB1} - v_{aB1} + v_{aB2} - v_{cB2} + v_{bB3} - v_{cB3}$
В	7 - 8 - 7	1	0	0	1	0	0	1	0	0	0	0	1	0	1	0	1	0	0	$v_{bB1} - v_{aB1} + v_{aB2} - v_{cB2} + v_{bB3} - v_{aB3}$
В	7 - 8 - 8	1	0	0	1	0	0	1	0	0	0	0	1	1	0	0	0	0	1	$v_{bB1} - v_{aB1} + v_{aB2} - v_{cB2} + v_{aB3} - v_{cB3}$
В	7 - 8 - 9	1	0	0	1	0	0	1	0	0	0	0	1	1	0	0	0	1	0	$v_{bB1} - v_{aB1} + v_{aB2} - v_{cB2} + v_{aB3} - v_{bB3}$
В	7 - 9 - 1	1	0	0	1	0	0	1	0	0	0	1	0	0	0	1	0	0	1	$v_{bB1} - v_{aB1} + v_{aB2} - v_{bB2}$
В	7 - 9 - 2	1	0	0	1	0	0	1	0	0	0	1	0	0	1	0	0	1	0	$v_{bB1} - v_{aB1} + v_{aB2} - v_{bB2}$
В	7 - 9 - 3	1	0	0	1	0	0	1	0	0	0	1	0	1	0	0	1	0	0	$v_{bB1} - v_{aB1} + v_{aB2} - v_{bB2}$
В	7 - 9 - 4	1	0	0	1	0	0	1	0	0	0	1	0	0	0	1	0	1	0	$v_{bB1} - v_{aB1} + v_{aB2} - v_{bB2} + v_{cB3} - v_{bB3}$
В	7 - 9 - 5	1	0	0	1	0	0	1	0	0	0	1	0	0	0	1	1	0	0	$v_{bB1} - v_{aB1} + v_{aB2} - v_{bB2} + v_{cB3} - v_{aB3}$
В	7 - 9 - 6	1	0	0	1	0	0	1	0	0	0	1	0	0	1	0	0	0	1	$v_{bB1} - v_{aB1} + v_{aB2} - v_{bB2} + v_{bB3} - v_{cB3}$
В	7 - 9 - 7	1	0	0	1	0	0	1	0	0	0	1	0	0	1	0	1	0	0	$v_{bB1} - v_{aB1} + v_{aB2} - v_{bB2} + v_{bB3} - v_{aB3}$
В	7 - 9 - 8	1	0	0	1	0	0	1	0	0	0	1	0	1	0	0	0	0	1	$v_{bB1} - v_{aB1} + v_{aB2} - v_{bB2} + v_{aB3} - v_{cB3}$
В	7 - 9 - 9	1	0	0	1	0	0	1	0	0	0	1	0	1	0	0	0	1	0	$v_{bB1} - v_{aB1} + v_{aB2} - v_{bB2} + v_{aB3} - v_{bB3}$

Tabla 63: Estados válidos de conmutación de cada convertidor matricial 3x1

	1	I		D						D				ı		D				I
	-	~	a	B_1	a	0	a	a	a	B_2	0	a	a	~	a	B_3	0	a	a	
Fase	Est. conmut.	S_1	S_2	S_3	S_4	S_5	S_6	S_1	S_2	S_3	S_4	S_5	S_6	S_1	S_2	S_3	S_4	S_5	S_6	v_{xn}
В	8 - 1 - 1	1	0	0	0	0	1	0	0	1	0	0	1	0	0	1	0	0	1	$v_{aB1} - v_{cB1}$
В	8 - 1 - 2	1	0	0	0	0	1	0	0	1	0	0	1	0	1	0	0	1	0	$v_{aB1} - v_{cB1}$
В	8 - 1 - 3	1	0	0	0	0	1	0	0	1	0	0	1	1	0	0	1	0	0	$v_{aB1} - v_{cB1}$
В	8 - 1 - 4	1	0	0	0	0	1	0	0	1	0	0	1	0	0	1	0	1	0	$v_{aB1} - v_{cB1} + v_{cB3} - v_{bB3}$
В	8 - 1 - 5	1	0	0	0	0	1	0	0	1	0	0	1	0	0	1	1	0	0	$v_{aB1} - v_{cB1} + v_{cB3} - v_{aB3}$
В	8 - 1 - 6	1	0	0	0	0	1	0	0	1	0	0	1	0	1	0	0	0	1	$v_{aB1} - v_{cB1} + v_{bB3} - v_{cB3}$
В	8 - 1 - 7	1	0	0	0	0	1	0	0	1	0	0	1	0	1	0	1	0	0	$v_{aB1} - v_{cB1} + v_{bB3} - v_{aB3}$
В	8 - 1 - 8	1	0	0	0	0	1	0	0	1	0	0	1	1	0	0	0	0	1	$v_{aB1} - v_{cB1} + v_{aB3} - v_{cB3}$
В	8 - 1 - 9	1	0	0	0	0	1	0	0	1	0	0	1	1	0	0	0	1	0	$v_{aB1} - v_{cB1} + v_{aB3} - v_{bB3}$
В	8 - 2 - 1	1	0	0	0	0	1	0	1	0	0	1	0	0	0	1	0	0	1	$v_{aB1} - v_{cB1}$
В	8 - 2 - 2	1	0	0	0	0	1	0	1	0	0	1	0	0	1	0	0	1	0	$v_{aB1} - v_{cB1}$
В	8 - 2 - 3	1	0	0	0	0	1	0	1	0	0	1	0	1	0	0	1	0	0	$v_{aB1} - v_{cB1}$
В	8 - 2 - 4	1	0	0	0	0	1	0	1	0	0	1	0	0	0	1	0	1	0	$v_{aB1} - v_{cB1} + v_{cB3} - v_{bB3}$
В	8 - 2 - 5	1	0	0	0	0	1	0	1	0	0	1	0	0	0	1	1	0	0	$v_{aB1} - v_{cB1} + v_{cB3} - v_{aB3}$
В	8 - 2 - 6	1	0	0	0	0	1	0	1	0	0	1	0	0	1	0	0	0	1	$v_{aB1} - v_{cB1} + v_{bB3} - v_{cB3}$
В	8 - 2 - 7	1	0	0	0	0	1	0	1	0	0	1	0	0	1	0	1	0	0	$v_{aB1} - v_{cB1} + v_{bB3} - v_{aB3}$
В	8 - 2 - 8	1	0	0	0	0	1	0	1	0	0	1	0	1	0	0	0	0	1	$v_{aB1} - v_{cB1} + v_{aB3} - v_{cB3}$
В	8 - 2 - 9	1	0	0	0	0	1	0	1	0	0	1	0	1	0	0	0	1	0	$v_{aB1} - v_{cB1} + v_{aB3} - v_{bB3}$
В	8 - 3 - 1	1	0	0	0	0	1	1	0	0	1	0	0	0	0	1	0	0	1	$v_{aB1} - v_{cB1}$
В	8 - 3 - 2	1	0	0	0	0	1	1	0	0	1	0	0	0	1	0	0	1	0	$v_{aB1} - v_{cB1}$
В	8 - 3 - 3	1	0	0	0	0	1	1	0	0	1	0	0	1	0	0	1	0	0	$v_{aB1} - v_{cB1}$
В	8 - 3 - 4	1	0	0	0	0	1	1	0	0	1	0	0	0	0	1	0	1	0	$v_{aB1} - v_{cB1} + v_{cB3} - v_{bB3}$
В	8 - 3 - 5	1	0	0	0	0	1	1	0	0	1	0	0	0	0	1	1	0	0	$v_{aB1} - v_{cB1} + v_{cB3} - v_{aB3}$
В	8 - 3 - 6	1	0	0	0	0	1	1	0	0	1	0	0	0	1	0	0	0	1	$v_{aB1} - v_{cB1} + v_{bB3} - v_{cB3}$
В	8 - 3 - 7	1	0	0	0	0	1	1	0	0	1	0	0	0	1	0	1	0	0	$v_{aB1} - v_{cB1} + v_{bB3} - v_{aB3}$
В	8 - 3 - 8	1	0	0	0	0	1	1	0	0	1	0	0	1	0	0	0	0	1	$v_{aB1} - v_{cB1} + v_{aB3} - v_{cB3}$
В	8 - 3 - 9	1	0	0	0	0	1	1	0	0	1	0	0	1	0	0	0	1	0	$v_{aB1} - v_{cB1} + v_{aB3} - v_{bB3}$

Tabla 64: Estados válidos de conmutación de cada convertidor matricial 3x1

				B_1				1		B_2						B_3				
Fase	Est. conmut.	S_1	S_2	S_3	S_4	S_5	S_6	S_1	S_2	S_3	S_4	S_5	S_6	S_1	S_2	S_3	S_4	S_5	S_6	v_{xn}
В	8 - 4 - 1	1	0	0	0	0	1	0	0	1	0	1	0	0	0	1	0	0	1	$v_{aB1} - v_{cB1} + v_{cB2} - v_{bB2}$
В	8 - 4 - 2	1	0	0	0	0	1	0	0	1	0	1	0	0	1	0	0	1	0	$v_{aB1} - v_{cB1} + v_{cB2} - v_{bB2}$
В	8 - 4 - 3	1	0	0	0	0	1	0	0	1	0	1	0	1	0	0	1	0	0	$v_{aB1} - v_{cB1} + v_{cB2} - v_{bB2}$
В	8 - 4 - 4	1	0	0	0	0	1	0	0	1	0	1	0	0	0	1	0	1	0	$v_{aB1} - v_{cB1} + v_{cB2} - v_{bB2} + v_{cB3} - v_{bB3}$
В	8 - 4 - 5	1	0	0	0	0	1	0	0	1	0	1	0	0	0	1	1	0	0	$v_{aB1} - v_{cB1} + v_{cB2} - v_{bB2} + v_{cB3} - v_{aB3}$
В	8 - 4 - 6	1	0	0	0	0	1	0	0	1	0	1	0	0	1	0	0	0	1	$v_{aB1} - v_{cB1} + v_{cB2} - v_{bB2} + v_{bB3} - v_{cB3}$
В	8 - 4 - 7	1	0	0	0	0	1	0	0	1	0	1	0	0	1	0	1	0	0	$v_{aB1} - v_{cB1} + v_{cB2} - v_{bB2} + v_{bB3} - v_{aB3}$
В	8 - 4 - 8	1	0	0	0	0	1	0	0	1	0	1	0	1	0	0	0	0	1	$v_{aB1} - v_{cB1} + v_{cB2} - v_{bB2} + v_{aB3} - v_{cB3}$
В	8 - 4 - 9	1	0	0	0	0	1	0	0	1	0	1	0	1	0	0	0	1	0	$v_{aB1} - v_{cB1} + v_{cB2} - v_{bB2} + v_{aB3} - v_{bB3}$
В	8 - 5 - 1	1	0	0	0	0	1	0	0	1	1	0	0	0	0	1	0	0	1	$v_{aB1} - v_{cB1} + v_{cB2} - v_{aB2}$
В	8 - 5 - 2	1	0	0	0	0	1	0	0	1	1	0	0	0	1	0	0	1	0	$v_{aB1} - v_{cB1} + v_{cB2} - v_{aB2}$
В	8 - 5 - 3	1	0	0	0	0	1	0	0	1	1	0	0	1	0	0	1	0	0	$v_{aB1} - v_{cB1} + v_{cB2} - v_{aB2}$
В	8 - 5 - 4	1	0	0	0	0	1	0	0	1	1	0	0	0	0	1	0	1	0	$v_{aB1} - v_{cB1} + v_{cB2} - v_{aB2} + v_{cB3} - v_{bB3}$
В	8 - 5 - 5	1	0	0	0	0	1	0	0	1	1	0	0	0	0	1	1	0	0	$v_{aB1} - v_{cB1} + v_{cB2} - v_{aB2} + v_{cB3} - v_{aB3}$
В	8 - 5 - 6	1	0	0	0	0	1	0	0	1	1	0	0	0	1	0	0	0	1	$v_{aB1} - v_{cB1} + v_{cB2} - v_{aB2} + v_{bB3} - v_{cB3}$
В	8 - 5 - 7	1	0	0	0	0	1	0	0	1	1	0	0	0	1	0	1	0	0	$v_{aB1} - v_{cB1} + v_{cB2} - v_{aB2} + v_{bB3} - v_{aB3}$
В	8 - 5 - 8	1	0	0	0	0	1	0	0	1	1	0	0	1	0	0	0	0	1	$v_{aB1} - v_{cB1} + v_{cB2} - v_{aB2} + v_{aB3} - v_{cB3}$
В	8 - 5 - 9	1	0	0	0	0	1	0	0	1	1	0	0	1	0	0	0	1	0	$v_{aB1} - v_{cB1} + v_{cB2} - v_{aB2} + v_{aB3} - v_{bB3}$
В	8 - 6 - 1	1	0	0	0	0	1	0	1	0	0	0	1	0	0	1	0	0	1	$v_{aB1} - v_{cB1} + v_{bB2} - v_{cB2}$
В	8 - 6 - 2	1	0	0	0	0	1	0	1	0	0	0	1	0	1	0	0	1	0	$v_{aB1} - v_{cB1} + v_{bB2} - v_{cB2}$
В	8 - 6 - 3	1	0	0	0	0	1	0	1	0	0	0	1	1	0	0	1	0	0	$v_{aB1} - v_{cB1} + v_{bB2} - v_{cB2}$
В	8 - 6 - 4	1	0	0	0	0	1	0	1	0	0	0	1	0	0	1	0	1	0	$v_{aB1} - v_{cB1} + v_{bB2} - v_{cB2} + v_{cB3} - v_{bB3}$
В	8 - 6 - 5	1	0	0	0	0	1	0	1	0	0	0	1	0	0	1	1	0	0	$v_{aB1} - v_{cB1} + v_{bB2} - v_{cB2} + v_{cB3} - v_{aB3}$
В	8 - 6 - 6	1	0	0	0	0	1	0	1	0	0	0	1	0	1	0	0	0	1	$v_{aB1} - v_{cB1} + v_{bB2} - v_{cB2} + v_{bB3} - v_{cB3}$
В	8 - 6 - 7	1	0	0	0	0	1	0	1	0	0	0	1	0	1	0	1	0	0	$v_{aB1} - v_{cB1} + v_{bB2} - v_{cB2} + v_{bB3} - v_{aB3}$
В	8 - 6 - 8	1	0	0	0	0	1	0	1	0	0	0	1	1	0	0	0	0	1	$v_{aB1} - v_{cB1} + v_{bB2} - v_{cB2} + v_{aB3} - v_{cB3}$
В	8 - 6 - 9	1	0	0	0	0	1	0	1	0	0	0	1	1	0	0	0	1	0	$v_{aB1} - v_{cB1} + v_{bB2} - v_{cB2} + v_{aB2} - v_{bB2}$

Tabla 65: Estados válidos de conmutación de cada convertidor matricial 3x1

				B_1						B_2						B_3				
Fase	Est. conmut.	S_1	S_2	S_3	S_4	S_5	S_6	S_1	S_2	S_3	S_4	S_5	S_6	S_1	S_2	S_3	S_4	S_5	S_6	v_{xn}
В	8 - 7 - 1	1	0	0	0	0	1	0	1	0	1	0	0	0	0	1	0	0	1	$v_{aB1} - v_{cB1} + v_{bB2} - v_{aB2}$
В	8 - 7 - 2	1	0	0	0	0	1	0	1	0	1	0	0	0	1	0	0	1	0	$v_{aB1} - v_{cB1} + v_{bB2} - v_{aB2}$
В	8 - 7 - 3	1	0	0	0	0	1	0	1	0	1	0	0	1	0	0	1	0	0	$v_{aB1} - v_{cB1} + v_{bB2} - v_{aB2}$
В	8 - 7 - 4	1	0	0	0	0	1	0	1	0	1	0	0	0	0	1	0	1	0	$v_{aB1} - v_{cB1} + v_{bB2} - v_{aB2} + v_{cB3} - v_{bB3}$
В	8 - 7 - 5	1	0	0	0	0	1	0	1	0	1	0	0	0	0	1	1	0	0	$v_{aB1} - v_{cB1} + v_{bB2} - v_{aB2} + v_{cB3} - v_{aB3}$
В	8 - 7 - 6	1	0	0	0	0	1	0	1	0	1	0	0	0	1	0	0	0	1	$v_{aB1} - v_{cB1} + v_{bB2} - v_{aB2} + v_{bB3} - v_{cB3}$
В	8 - 7 - 7	1	0	0	0	0	1	0	1	0	1	0	0	0	1	0	1	0	0	$v_{aB1} - v_{cB1} + v_{bB2} - v_{aB2} + v_{bB3} - v_{aB3}$
В	8 - 7 - 8	1	0	0	0	0	1	0	1	0	1	0	0	1	0	0	0	0	1	$v_{aB1} - v_{cB1} + v_{bB2} - v_{aB2} + v_{aB3} - v_{cB3}$
В	8 - 7 - 9	1	0	0	0	0	1	0	1	0	1	0	0	1	0	0	0	1	0	$v_{aB1} - v_{cB1} + v_{bB2} - v_{aB2} + v_{aB3} - v_{bB3}$
В	8 - 8 - 1	1	0	0	0	0	1	1	0	0	0	0	1	0	0	1	0	0	1	$v_{aB1} - v_{cB1} + v_{aB2} - v_{cB2}$
В	8 - 8 - 2	1	0	0	0	0	1	1	0	0	0	0	1	0	1	0	0	1	0	$v_{aB1} - v_{cB1} + v_{aB2} - v_{cB2}$
В	8 - 8 - 3	1	0	0	0	0	1	1	0	0	0	0	1	1	0	0	1	0	0	$v_{aB1} - v_{cB1} + v_{aB2} - v_{cB2}$
В	8 - 8 - 4	1	0	0	0	0	1	1	0	0	0	0	1	0	0	1	0	1	0	$v_{aB1} - v_{cB1} + v_{aB2} - v_{cB2} + v_{cB3} - v_{bB3}$
В	8 - 8 - 5	1	0	0	0	0	1	1	0	0	0	0	1	0	0	1	1	0	0	$v_{aB1} - v_{cB1} + v_{aB2} - v_{cB2} + v_{cB3} - v_{aB3}$
В	8 - 8 - 6	1	0	0	0	0	1	1	0	0	0	0	1	0	1	0	0	0	1	$v_{aB1} - v_{cB1} + v_{aB2} - v_{cB2} + v_{bB3} - v_{cB3}$
В	8 - 8 - 7	1	0	0	0	0	1	1	0	0	0	0	1	0	1	0	1	0	0	$v_{aB1} - v_{cB1} + v_{aB2} - v_{cB2} + v_{bB3} - v_{aB3}$
В	8 - 8 - 8	1	0	0	0	0	1	1	0	0	0	0	1	1	0	0	0	0	1	$v_{aB1} - v_{cB1} + v_{aB2} - v_{cB2} + v_{aB3} - v_{cB3}$
В	8 - 8 - 9	1	0	0	0	0	1	1	0	0	0	0	1	1	0	0	0	1	0	$v_{aB1} - v_{cB1} + v_{aB2} - v_{cB2} + v_{aB3} - v_{bB3}$
В	8 - 9 - 1	1	0	0	0	0	1	1	0	0	0	1	0	0	0	1	0	0	1	$v_{aB1} - v_{cB1} + v_{aB2} - v_{bB2}$
В	8 - 9 - 2	1	0	0	0	0	1	1	0	0	0	1	0	0	1	0	0	1	0	$v_{aB1} - v_{cB1} + v_{aB2} - v_{bB2}$
В	8 - 9 - 3	1	0	0	0	0	1	1	0	0	0	1	0	1	0	0	1	0	0	$v_{aB1} - v_{cB1} + v_{aB2} - v_{bB2}$
В	8 - 9 - 4	1	0	0	0	0	1	1	0	0	0	1	0	0	0	1	0	1	0	$v_{aB1} - v_{cB1} + v_{aB2} - v_{bB2} + v_{cB3} - v_{bB3}$
В	8 - 9 - 5	1	0	0	0	0	1	1	0	0	0	1	0	0	0	1	1	0	0	$v_{aB1} - v_{cB1} + v_{aB2} - v_{bB2} + v_{cB3} - v_{aB3}$
В	8 - 9 - 6	1	0	0	0	0	1	1	0	0	0	1	0	0	1	0	0	0	1	$v_{aB1} - v_{cB1} + v_{aB2} - v_{bB2} + v_{bB3} - v_{cB3}$
В	8 - 9 - 7	1	0	0	0	0	1	1	0	0	0	1	0	0	1	0	1	0	0	$v_{aB1} - v_{cB1} + v_{aB2} - v_{bB2} + v_{bB3} - v_{aB3}$
в	8 - 9 - 8	1	0	0	0	0	1	1	0	0	0	1	0	1	0	0	0	0	1	$v_{aB1} - v_{cB1} + v_{aB2} - v_{bB2} + v_{aB3} - v_{cB3}$
В	8 - 9 - 9	1	0	0	0	0	1	1	0	0	0	1	0	1	0	0	0	1	0	$v_{aB1} - v_{cB1} + v_{aB2} - v_{bB2} + v_{aB3} - v_{bB3}$

Tabla 66: Estados válidos de conmutación de cada convertidor matricial 3x1

				B_1						B_2						B_{2}				
Fase	Est. conmut.	S_1	S_2	S_3	S_4	S_5	S_6	S_1	S_2	S_3	S_4	S_5	S_6	S_1	S_2	S_3	S_4	S_5	S_6	v_{xn}
В	9 - 1 - 1	1	0	0	0	1	0	0	0	1	0	0	1	0	0	1	0	0	1	$v_{aB1} - v_{bB1}$
В	9 - 1 - 2	1	0	0	0	1	0	0	0	1	0	0	1	0	1	0	0	1	0	$v_{aB1} - v_{bB1}$
В	9 - 1 - 3	1	0	0	0	1	0	0	0	1	0	0	1	1	0	0	1	0	0	$v_{aB1} - v_{bB1}$
В	9 - 1 - 4	1	0	0	0	1	0	0	0	1	0	0	1	0	0	1	0	1	0	$v_{aB1} - v_{bB1} + v_{cB3} - v_{bB3}$
В	9 - 1 - 5	1	0	0	0	1	0	0	0	1	0	0	1	0	0	1	1	0	0	$v_{aB1} - v_{bB1} + v_{cB3} - v_{aB3}$
В	9 - 1 - 6	1	0	0	0	1	0	0	0	1	0	0	1	0	1	0	0	0	1	$v_{aB1} - v_{bB1} + v_{bB3} - v_{cB3}$
В	9 - 1 - 7	1	0	0	0	1	0	0	0	1	0	0	1	0	1	0	1	0	0	$v_{aB1} - v_{bB1} + v_{bB3} - v_{aB3}$
В	9 - 1 - 8	1	0	0	0	1	0	0	0	1	0	0	1	1	0	0	0	0	1	$v_{aB1} - v_{bB1} + v_{aB3} - v_{cB3}$
В	9 - 1 - 9	1	0	0	0	1	0	0	0	1	0	0	1	1	0	0	0	1	0	$v_{aB1} - v_{bB1} + v_{aB3} - v_{bB3}$
В	9 - 2 - 1	1	0	0	0	1	0	0	1	0	0	1	0	0	0	1	0	0	1	$v_{aB1} - v_{bB1}$
В	9 - 2 - 2	1	0	0	0	1	0	0	1	0	0	1	0	0	1	0	0	1	0	$v_{aB1} - v_{bB1}$
В	9 - 2 - 3	1	0	0	0	1	0	0	1	0	0	1	0	1	0	0	1	0	0	$v_{aB1} - v_{bB1}$
В	9 - 2 - 4	1	0	0	0	1	0	0	1	0	0	1	0	0	0	1	0	1	0	$v_{aB1} - v_{bB1} + v_{cB3} - v_{bB3}$
В	9 - 2 - 5	1	0	0	0	1	0	0	1	0	0	1	0	0	0	1	1	0	0	$v_{aB1} - v_{bB1} + v_{cB3} - v_{aB3}$
В	9 - 2 - 6	1	0	0	0	1	0	0	1	0	0	1	0	0	1	0	0	0	1	$v_{aB1} - v_{bB1} + v_{bB3} - v_{cB3}$
В	9 - 2 - 7	1	0	0	0	1	0	0	1	0	0	1	0	0	1	0	1	0	0	$v_{aB1} - v_{bB1} + v_{bB3} - v_{aB3}$
В	9 - 2 - 8	1	0	0	0	1	0	0	1	0	0	1	0	1	0	0	0	0	1	$v_{aB1} - v_{bB1} + v_{aB3} - v_{cB3}$
В	9 - 2 - 9	1	0	0	0	1	0	0	1	0	0	1	0	1	0	0	0	1	0	$v_{aB1} - v_{bB1} + v_{aB3} - v_{bB3}$
В	9 - 3 - 1	1	0	0	0	1	0	1	0	0	1	0	0	0	0	1	0	0	1	$v_{aB1} - v_{bB1}$
В	9 - 3 - 2	1	0	0	0	1	0	1	0	0	1	0	0	0	1	0	0	1	0	$v_{aB1} - v_{bB1}$
В	9 - 3 - 3	1	0	0	0	1	0	1	0	0	1	0	0	1	0	0	1	0	0	$v_{aB1} - v_{bB1}$
В	9 - 3 - 4	1	0	0	0	1	0	1	0	0	1	0	0	0	0	1	0	1	0	$v_{aB1} - v_{bB1} + v_{cB3} - v_{bB3}$
В	9 - 3 - 5	1	0	0	0	1	0	1	0	0	1	0	0	0	0	1	1	0	0	$v_{aB1} - v_{bB1} + v_{cB3} - v_{aB3}$
В	9 - 3 - 6	1	0	0	0	1	0	1	0	0	1	0	0	0	1	0	0	0	1	$v_{aB1} - v_{bB1} + v_{bB3} - v_{cB3}$
В	9 - 3 - 7	1	0	0	0	1	0	1	0	0	1	0	0	0	1	0	1	0	0	$v_{aB1} - v_{bB1} + v_{bB3} - v_{aB3}$
В	9 - 3 - 8	1	0	0	0	1	0	1	0	0	1	0	0	1	0	0	0	0	1	$v_{aB1} - v_{bB1} + v_{aB3} - v_{cB3}$
В	9 - 3 - 9	1	0	0	0	1	0	1	0	0	1	0	0	1	0	0	0	1	0	$v_{aB1} - v_{bB1} + v_{aB3} - v_{bB3}$

Tabla 67: Estados válidos de conmutación de cada convertidor matricial 3x1

				B_1						B_2						B_3				
Fase	Est. conmut.	S_1	S_2	S_3	S_4	S_5	S_6	S_1	S_2	S_3	S_4	S_5	S_6	S_1	S_2	S_3	S_4	S_5	S_6	v_{xn}
В	9 - 4 - 1	1	0	0	0	1	0	0	0	1	0	1	0	0	0	1	0	0	1	$v_{aB1} - v_{bB1} + v_{cB2} - v_{bB2}$
В	9 - 4 - 2	1	0	0	0	1	0	0	0	1	0	1	0	0	1	0	0	1	0	$v_{aB1} - v_{bB1} + v_{cB2} - v_{bB2}$
В	9 - 4 - 3	1	0	0	0	1	0	0	0	1	0	1	0	1	0	0	1	0	0	$v_{aB1} - v_{bB1} + v_{cB2} - v_{bB2}$
В	9 - 4 - 4	1	0	0	0	1	0	0	0	1	0	1	0	0	0	1	0	1	0	$v_{aB1} - v_{bB1} + v_{cB2} - v_{bB2} + v_{cB3} - v_{bB3}$
В	9 - 4 - 5	1	0	0	0	1	0	0	0	1	0	1	0	0	0	1	1	0	0	$v_{aB1} - v_{bB1} + v_{cB2} - v_{bB2} + v_{cB3} - v_{aB3}$
В	9 - 4 - 6	1	0	0	0	1	0	0	0	1	0	1	0	0	1	0	0	0	1	$v_{aB1} - v_{bB1} + v_{cB2} - v_{bB2} + v_{bB3} - v_{cB3}$
В	9 - 4 - 7	1	0	0	0	1	0	0	0	1	0	1	0	0	1	0	1	0	0	$v_{aB1} - v_{bB1} + v_{cB2} - v_{bB2} + v_{bB3} - v_{aB3}$
В	9 - 4 - 8	1	0	0	0	1	0	0	0	1	0	1	0	1	0	0	0	0	1	$v_{aB1} - v_{bB1} + v_{cB2} - v_{bB2} + v_{aB3} - v_{cB3}$
В	9 - 4 - 9	1	0	0	0	1	0	0	0	1	0	1	0	1	0	0	0	1	0	$v_{aB1} - v_{bB1} + v_{cB2} - v_{bB2} + v_{aB3} - v_{bB3}$
В	9 - 5 - 1	1	0	0	0	1	0	0	0	1	1	0	0	0	0	1	0	0	1	$v_{aB1} - v_{bB1} + v_{cB2} - v_{aB2}$
В	9 - 5 - 2	1	0	0	0	1	0	0	0	1	1	0	0	0	1	0	0	1	0	$v_{aB1} - v_{bB1} + v_{cB2} - v_{aB2}$
В	9 - 5 - 3	1	0	0	0	1	0	0	0	1	1	0	0	1	0	0	1	0	0	$v_{aB1} - v_{bB1} + v_{cB2} - v_{aB2}$
В	9 - 5 - 4	1	0	0	0	1	0	0	0	1	1	0	0	0	0	1	0	1	0	$v_{aB1} - v_{bB1} + v_{cB2} - v_{aB2} + v_{cB3} - v_{bB3}$
В	9 - 5 - 5	1	0	0	0	1	0	0	0	1	1	0	0	0	0	1	1	0	0	$v_{aB1} - v_{bB1} + v_{cB2} - v_{aB2} + v_{cB3} - v_{aB3}$
В	9 - 5 - 6	1	0	0	0	1	0	0	0	1	1	0	0	0	1	0	0	0	1	$v_{aB1} - v_{bB1} + v_{cB2} - v_{aB2} + v_{bB3} - v_{cB3}$
В	9 - 5 - 7	1	0	0	0	1	0	0	0	1	1	0	0	0	1	0	1	0	0	$v_{aB1} - v_{bB1} + v_{cB2} - v_{aB2} + v_{bB3} - v_{aB3}$
В	9 - 5 - 8	1	0	0	0	1	0	0	0	1	1	0	0	1	0	0	0	0	1	$v_{aB1} - v_{bB1} + v_{cB2} - v_{aB2} + v_{aB3} - v_{cB3}$
В	9 - 5 - 9	1	0	0	0	1	0	0	0	1	1	0	0	1	0	0	0	1	0	$v_{aB1} - v_{bB1} + v_{cB2} - v_{aB2} + v_{aB3} - v_{bB3}$
В	9 - 6 - 1	1	0	0	0	1	0	0	1	0	0	0	1	0	0	1	0	0	1	$v_{aB1} - v_{bB1} + v_{bB2} - v_{cB2}$
В	9 - 6 - 2	1	0	0	0	1	0	0	1	0	0	0	1	0	1	0	0	1	0	$v_{aB1} - v_{bB1} + v_{bB2} - v_{cB2}$
В	9 - 6 - 3	1	0	0	0	1	0	0	1	0	0	0	1	1	0	0	1	0	0	$v_{aB1} - v_{bB1} + v_{bB2} - v_{cB2}$
В	9 - 6 - 4	1	0	0	0	1	0	0	1	0	0	0	1	0	0	1	0	1	0	$v_{aB1} - v_{bB1} + v_{bB2} - v_{cB2} + v_{cB3} - v_{bB3}$
В	9 - 6 - 5	1	0	0	0	1	0	0	1	0	0	0	1	0	0	1	1	0	0	$v_{aB1} - v_{bB1} + v_{bB2} - v_{cB2} + v_{cB3} - v_{aB3}$
В	9 - 6 - 6	1	0	0	0	1	0	0	1	0	0	0	1	0	1	0	0	0	1	$v_{aB1} - v_{bB1} + v_{bB2} - v_{cB2} + v_{bB3} - v_{cB3}$
В	9 - 6 - 7	1	0	0	0	1	0	0	1	0	0	0	1	0	1	0	1	0	0	$v_{aB1} - v_{bB1} + v_{bB2} - v_{cB2} + v_{bB3} - v_{aB3}$
В	9 - 6 - 8	1	0	0	0	1	0	0	1	0	0	0	1	1	0	0	0	0	1	$v_{aB1} - v_{bB1} + v_{bB2} - v_{cB2} + v_{aB3} - v_{cB3}$
В	9 - 6 - 9	1	0	0	0	1	0	0	1	0	0	0	1	1	0	0	0	1	0	$v_{aB1} - v_{bB1} + v_{bB2} - v_{cB2} + v_{aB2} - v_{bB2}$

Tabla 68: Estados válidos de conmutación de cada convertidor matricial 3x1

				B_1						B_2						B_3				
Fase	Est. conmut.	S_1	S_2	S_3	S_4	S_5	S_6	S_1	S_2	S_3	S_4	S_5	S_6	S_1	S_2	S_3	S_4	S_5	S_6	v_{xn}
В	9 - 7 - 1	1	0	0	0	1	0	0	1	0	1	0	0	0	0	1	0	0	1	$v_{aB1} - v_{bB1} + v_{bB2} - v_{aB2}$
В	9 - 7 - 2	1	0	0	0	1	0	0	1	0	1	0	0	0	1	0	0	1	0	$v_{aB1} - v_{bB1} + v_{bB2} - v_{aB2}$
В	9 - 7 - 3	1	0	0	0	1	0	0	1	0	1	0	0	1	0	0	1	0	0	$v_{aB1} - v_{bB1} + v_{bB2} - v_{aB2}$
В	9 - 7 - 4	1	0	0	0	1	0	0	1	0	1	0	0	0	0	1	0	1	0	$v_{aB1} - v_{bB1} + v_{bB2} - v_{aB2} + v_{cB3} - v_{bB3}$
В	9 - 7 - 5	1	0	0	0	1	0	0	1	0	1	0	0	0	0	1	1	0	0	$v_{aB1} - v_{bB1} + v_{bB2} - v_{aB2} + v_{cB3} - v_{aB3}$
В	9 - 7 - 6	1	0	0	0	1	0	0	1	0	1	0	0	0	1	0	0	0	1	$v_{aB1} - v_{bB1} + v_{bB2} - v_{aB2} + v_{bB3} - v_{cB3}$
В	9 - 7 - 7	1	0	0	0	1	0	0	1	0	1	0	0	0	1	0	1	0	0	$v_{aB1} - v_{bB1} + v_{bB2} - v_{aB2} + v_{bB3} - v_{aB3}$
В	9 - 7 - 8	1	0	0	0	1	0	0	1	0	1	0	0	1	0	0	0	0	1	$v_{aB1} - v_{bB1} + v_{bB2} - v_{aB2} + v_{aB3} - v_{cB3}$
В	9 - 7 - 9	1	0	0	0	1	0	0	1	0	1	0	0	1	0	0	0	1	0	$v_{aB1} - v_{bB1} + v_{bB2} - v_{aB2} + v_{aB3} - v_{bB3}$
В	9 - 8 - 1	1	0	0	0	1	0	1	0	0	0	0	1	0	0	1	0	0	1	$v_{aB1} - v_{bB1} + v_{aB2} - v_{cB2}$
В	9 - 8 - 2	1	0	0	0	1	0	1	0	0	0	0	1	0	1	0	0	1	0	$v_{aB1} - v_{bB1} + v_{aB2} - v_{cB2}$
В	9 - 8 - 3	1	0	0	0	1	0	1	0	0	0	0	1	1	0	0	1	0	0	$v_{aB1} - v_{bB1} + v_{aB2} - v_{cB2}$
В	9 - 8 - 4	1	0	0	0	1	0	1	0	0	0	0	1	0	0	1	0	1	0	$v_{aB1} - v_{bB1} + v_{aB2} - v_{cB2} + v_{cB3} - v_{bB3}$
В	9 - 8 - 5	1	0	0	0	1	0	1	0	0	0	0	1	0	0	1	1	0	0	$v_{aB1} - v_{bB1} + v_{aB2} - v_{cB2} + v_{cB3} - v_{aB3}$
В	9 - 8 - 6	1	0	0	0	1	0	1	0	0	0	0	1	0	1	0	0	0	1	$v_{aB1} - v_{bB1} + v_{aB2} - v_{cB2} + v_{bB3} - v_{cB3}$
В	9 - 8 - 7	1	0	0	0	1	0	1	0	0	0	0	1	0	1	0	1	0	0	$v_{aB1} - v_{bB1} + v_{aB2} - v_{cB2} + v_{bB3} - v_{aB3}$
В	9 - 8 - 8	1	0	0	0	1	0	1	0	0	0	0	1	1	0	0	0	0	1	$v_{aB1} - v_{bB1} + v_{aB2} - v_{cB2} + v_{aB3} - v_{cB3}$
В	9 - 8 - 9	1	0	0	0	1	0	1	0	0	0	0	1	1	0	0	0	1	0	$v_{aB1} - v_{bB1} + v_{aB2} - v_{cB2} + v_{aB3} - v_{bB3}$
В	9 - 9 - 1	1	0	0	0	1	0	1	0	0	0	1	0	0	0	1	0	0	1	$v_{aB1} - v_{bB1} + v_{aB2} - v_{bB2}$
В	9 - 9 - 2	1	0	0	0	1	0	1	0	0	0	1	0	0	1	0	0	1	0	$v_{aB1} - v_{bB1} + v_{aB2} - v_{bB2}$
В	9 - 9 - 3	1	0	0	0	1	0	1	0	0	0	1	0	1	0	0	1	0	0	$v_{aB1} - v_{bB1} + v_{aB2} - v_{bB2}$
В	9 - 9 - 4	1	0	0	0	1	0	1	0	0	0	1	0	0	0	1	0	1	0	$v_{aB1} - v_{bB1} + v_{aB2} - v_{bB2} + v_{cB3} - v_{bB3}$
В	9 - 9 - 5	1	0	0	0	1	0	1	0	0	0	1	0	0	0	1	1	0	0	$v_{aB1} - v_{bB1} + v_{aB2} - v_{bB2} + v_{cB3} - v_{aB3}$
В	9 - 9 - 6	1	0	0	0	1	0	1	0	0	0	1	0	0	1	0	0	0	1	$v_{aB1} - v_{bB1} + v_{aB2} - v_{bB2} + v_{bB3} - v_{cB3}$
В	9 - 9 - 7	1	0	0	0	1	0	1	0	0	0	1	0	0	1	0	1	0	0	$v_{aB1} - v_{bB1} + v_{aB2} - v_{bB2} + v_{bB3} - v_{aB3}$
в	9 - 9 - 8	1	0	0	0	1	0	1	0	0	0	1	0	1	0	0	0	0	1	$v_{aB1} - v_{bB1} + v_{aB2} - v_{bB2} + v_{aB3} - v_{cB3}$
В	9 - 9 - 9	1	0	0	0	1	0	1	0	0	0	1	0	1	0	0	0	1	0	$v_{aB1} - v_{bB1} + v_{aB2} - v_{bB2} + v_{aB3} - v_{bB3}$

Tabla 69: Estados válidos de conmutación de cada convertidor matricial 3x1

				C_1						C_2						C_3				
Fase	Est. conmut.	S_1	S_2	S_3	S_4	S_5	S_6	S_1	S_2	S_3	S_4	S_5	S_6	S_1	S_2	S_3	S_4	S_5	S_6	v_{xn}
С	1 - 1 - 1	0	0	1	0	0	1	0	0	1	0	0	1	0	0	1	0	0	1	0
\mathbf{C}	1 - 1 - 2	0	0	1	0	0	1	0	0	1	0	0	1	0	1	0	0	1	0	0
\mathbf{C}	1 - 1 - 3	0	0	1	0	0	1	0	0	1	0	0	1	1	0	0	1	0	0	0
\mathbf{C}	1 - 1 - 4	0	0	1	0	0	1	0	0	1	0	0	1	0	0	1	0	1	0	$v_{cC3} - v_{bC3}$
\mathbf{C}	1 - 1 - 5	0	0	1	0	0	1	0	0	1	0	0	1	0	0	1	1	0	0	$v_{cC3} - v_{aC3}$
\mathbf{C}	1 - 1 - 6	0	0	1	0	0	1	0	0	1	0	0	1	0	1	0	0	0	1	$v_{bC3} - v_{cC3}$
\mathbf{C}	1 - 1 - 7	0	0	1	0	0	1	0	0	1	0	0	1	0	1	0	1	0	0	$v_{bC3} - v_{aC3}$
\mathbf{C}	1 - 1 - 8	0	0	1	0	0	1	0	0	1	0	0	1	1	0	0	0	0	1	$v_{aC3} - v_{cC3}$
\mathbf{C}	1 - 1 - 9	0	0	1	0	0	1	0	0	1	0	0	1	1	0	0	0	1	0	$v_{aC3} - v_{bC3}$
\mathbf{C}	1 - 2 - 1	0	0	1	0	0	1	0	1	0	0	1	0	0	0	1	0	0	1	0
\mathbf{C}	1 - 2 - 2	0	0	1	0	0	1	0	1	0	0	1	0	0	1	0	0	1	0	0
\mathbf{C}	1 - 2 - 3	0	0	1	0	0	1	0	1	0	0	1	0	1	0	0	1	0	0	0
\mathbf{C}	1 - 2 - 4	0	0	1	0	0	1	0	1	0	0	1	0	0	0	1	0	1	0	$v_{cC3} - v_{bC3}$
\mathbf{C}	1 - 2 - 5	0	0	1	0	0	1	0	1	0	0	1	0	0	0	1	1	0	0	$v_{cC3} - v_{aC3}$
\mathbf{C}	1 - 2 - 6	0	0	1	0	0	1	0	1	0	0	1	0	0	1	0	0	0	1	$v_{bC3} - v_{cC3}$
\mathbf{C}	1 - 2 - 7	0	0	1	0	0	1	0	1	0	0	1	0	0	1	0	1	0	0	$v_{bC3} - v_{aC3}$
\mathbf{C}	1 - 2 - 8	0	0	1	0	0	1	0	1	0	0	1	0	1	0	0	0	0	1	$v_{aC3} - v_{cC3}$
\mathbf{C}	1 - 2 - 9	0	0	1	0	0	1	0	1	0	0	1	0	1	0	0	0	1	0	$v_{aC3} - v_{bC3}$
\mathbf{C}	1 - 3 - 1	0	0	1	0	0	1	1	0	0	1	0	0	0	0	1	0	0	1	0
\mathbf{C}	1 - 3 - 2	0	0	1	0	0	1	1	0	0	1	0	0	0	1	0	0	1	0	0
\mathbf{C}	1 - 3 - 3	0	0	1	0	0	1	1	0	0	1	0	0	1	0	0	1	0	0	0
\mathbf{C}	1 - 3 - 4	0	0	1	0	0	1	1	0	0	1	0	0	0	0	1	0	1	0	$v_{cC3} - v_{bC3}$
\mathbf{C}	1 - 3 - 5	0	0	1	0	0	1	1	0	0	1	0	0	0	0	1	1	0	0	$v_{cC3} - v_{aC3}$
\mathbf{C}	1 - 3 - 6	0	0	1	0	0	1	1	0	0	1	0	0	0	1	0	0	0	1	$v_{bC3} - v_{cC3}$
\mathbf{C}	1 - 3 - 7	0	0	1	0	0	1	1	0	0	1	0	0	0	1	0	1	0	0	$v_{bC3} - v_{aC3}$
С	1 - 3 - 8	0	0	1	0	0	1	1	0	0	1	0	0	1	0	0	0	0	1	$v_{aC3} - v_{cC3}$
\mathbf{C}	1 - 3 - 9	0	0	1	0	0	1	1	0	0	1	0	0	1	0	0	0	1	0	$v_{aC3} - v_{bC3}$

Tabla 70: Estados válidos de conmutación de cada convertidor matricial 3x1

				C_1						C_2						C_3				
Fase	Est. conmut.	S_1	S_2	S_3	S_4	S_5	S_6	S_1	S_2	S_3	S_4	S_5	S_6	S_1	S_2	S_3	S_4	S_5	S_6	v_{xn}
С	1 - 4 - 1	0	0	1	0	0	1	0	0	1	0	1	0	0	0	1	0	0	1	$v_{cC2} - v_{bC2}$
\mathbf{C}	1 - 4 - 2	0	0	1	0	0	1	0	0	1	0	1	0	0	1	0	0	1	0	$v_{cC2} - v_{bC2}$
\mathbf{C}	1 - 4 - 3	0	0	1	0	0	1	0	0	1	0	1	0	1	0	0	1	0	0	$v_{cC2} - v_{bC2}$
\mathbf{C}	1 - 4 - 4	0	0	1	0	0	1	0	0	1	0	1	0	0	0	1	0	1	0	$v_{cC2} - v_{bC2} + v_{cC3} - v_{bC3}$
\mathbf{C}	1 - 4 - 5	0	0	1	0	0	1	0	0	1	0	1	0	0	0	1	1	0	0	$v_{cC2} - v_{bC2} + v_{cC3} - v_{aC3}$
\mathbf{C}	1 - 4 - 6	0	0	1	0	0	1	0	0	1	0	1	0	0	1	0	0	0	1	$v_{cC2} - v_{bC2} + v_{bC3} - v_{cC3}$
\mathbf{C}	1 - 4 - 7	0	0	1	0	0	1	0	0	1	0	1	0	0	1	0	1	0	0	$v_{cC2} - v_{bC2} + v_{bC3} - v_{aC3}$
\mathbf{C}	1 - 4 - 8	0	0	1	0	0	1	0	0	1	0	1	0	1	0	0	0	0	1	$v_{cC2} - v_{bC2} + v_{aC3} - v_{cC3}$
\mathbf{C}	1 - 4 - 9	0	0	1	0	0	1	0	0	1	0	1	0	1	0	0	0	1	0	$v_{cC2} - v_{bC2} + v_{aC3} - v_{bC3}$
\mathbf{C}	1 - 5 - 1	0	0	1	0	0	1	0	0	1	1	0	0	0	0	1	0	0	1	$v_{cC2} - v_{aC2}$
\mathbf{C}	1 - 5 - 2	0	0	1	0	0	1	0	0	1	1	0	0	0	1	0	0	1	0	$v_{cC2} - v_{aC2}$
\mathbf{C}	1 - 5 - 3	0	0	1	0	0	1	0	0	1	1	0	0	1	0	0	1	0	0	$v_{cC2} - v_{aC2}$
\mathbf{C}	1 - 5 - 4	0	0	1	0	0	1	0	0	1	1	0	0	0	0	1	0	1	0	$v_{cC2} - v_{aC2} + v_{cC3} - v_{bC3}$
\mathbf{C}	1 - 5 - 5	0	0	1	0	0	1	0	0	1	1	0	0	0	0	1	1	0	0	$v_{cC2} - v_{aC2} + v_{cC3} - v_{aC3}$
\mathbf{C}	1 - 5 - 6	0	0	1	0	0	1	0	0	1	1	0	0	0	1	0	0	0	1	$v_{cC2} - v_{aC2} + v_{bC3} - v_{cC3}$
\mathbf{C}	1 - 5 - 7	0	0	1	0	0	1	0	0	1	1	0	0	0	1	0	1	0	0	$v_{cC2} - v_{aC2} + v_{bC3} - v_{aC3}$
\mathbf{C}	1 - 5 - 8	0	0	1	0	0	1	0	0	1	1	0	0	1	0	0	0	0	1	$v_{cC2} - v_{aC2} + v_{aC3} - v_{cC3}$
\mathbf{C}	1 - 5 - 9	0	0	1	0	0	1	0	0	1	1	0	0	1	0	0	0	1	0	$v_{cC2} - v_{aC2} + v_{aC3} - v_{bC3}$
\mathbf{C}	1 - 6 - 1	0	0	1	0	0	1	0	1	0	0	0	1	0	0	1	0	0	1	$v_{bC2} - v_{cC2}$
\mathbf{C}	1 - 6 - 2	0	0	1	0	0	1	0	1	0	0	0	1	0	1	0	0	1	0	$v_{bC2} - v_{cC2}$
\mathbf{C}	1 - 6 - 3	0	0	1	0	0	1	0	1	0	0	0	1	1	0	0	1	0	0	$v_{bC2} - v_{cC2}$
\mathbf{C}	1 - 6 - 4	0	0	1	0	0	1	0	1	0	0	0	1	0	0	1	0	1	0	$v_{bC2} - v_{cC2} + v_{cC3} - v_{bC3}$
\mathbf{C}	1 - 6 - 5	0	0	1	0	0	1	0	1	0	0	0	1	0	0	1	1	0	0	$v_{bC2} - v_{cC2} + v_{cC3} - v_{aC3}$
\mathbf{C}	1 - 6 - 6	0	0	1	0	0	1	0	1	0	0	0	1	0	1	0	0	0	1	$v_{bC2} - v_{cC2} + v_{bC3} - v_{cC3}$
С	1 - 6 - 7	0	0	1	0	0	1	0	1	0	0	0	1	0	1	0	1	0	0	$v_{bC2} - v_{cC2} + v_{bC3} - v_{aC3}$
С	1 - 6 - 8	0	0	1	0	0	1	0	1	0	0	0	1	1	0	0	0	0	1	$v_{bC2} - v_{cC2} + v_{aC3} - v_{cC3}$
\mathbf{C}	1 - 6 - 9	0	0	1	0	0	1	0	1	0	0	0	1	1	0	0	0	1	0	$v_{bC2} - v_{cC2} + v_{aC2} - v_{bC2}$

Tabla 71: Estados válidos de conmutación de cada convertidor matricial 3x1
				C_1						C_2						C_3				
Fase	Est. conmut.	S_1	S_2	S_3	S_4	S_5	S_6	S_1	S_2	S_3	S_4	S_5	S_6	S_1	S_2	S_3	S_4	S_5	S_6	v_{xn}
С	1 - 7 - 1	0	0	1	0	0	1	0	1	0	1	0	0	0	0	1	0	0	1	$v_{bC2} - v_{aC2}$
\mathbf{C}	1 - 7 - 2	0	0	1	0	0	1	0	1	0	1	0	0	0	1	0	0	1	0	$v_{bC2} - v_{aC2}$
\mathbf{C}	1 - 7 - 3	0	0	1	0	0	1	0	1	0	1	0	0	1	0	0	1	0	0	$v_{bC2} - v_{aC2}$
\mathbf{C}	1 - 7 - 4	0	0	1	0	0	1	0	1	0	1	0	0	0	0	1	0	1	0	$v_{bC2} - v_{aC2} + v_{cC3} - v_{bC3}$
\mathbf{C}	1 - 7 - 5	0	0	1	0	0	1	0	1	0	1	0	0	0	0	1	1	0	0	$v_{bC2} - v_{aC2} + v_{cC3} - v_{aC3}$
\mathbf{C}	1 - 7 - 6	0	0	1	0	0	1	0	1	0	1	0	0	0	1	0	0	0	1	$v_{bC2} - v_{aC2} + v_{bC3} - v_{cC3}$
\mathbf{C}	1 - 7 - 7	0	0	1	0	0	1	0	1	0	1	0	0	0	1	0	1	0	0	$v_{bC2} - v_{aC2} + v_{bC3} - v_{aC3}$
\mathbf{C}	1 - 7 - 8	0	0	1	0	0	1	0	1	0	1	0	0	1	0	0	0	0	1	$v_{bC2} - v_{aC2} + v_{aC3} - v_{cC3}$
\mathbf{C}	1 - 7 - 9	0	0	1	0	0	1	0	1	0	1	0	0	1	0	0	0	1	0	$v_{bC2} - v_{aC2} + v_{aC3} - v_{bC3}$
\mathbf{C}	1 - 8 - 1	0	0	1	0	0	1	1	0	0	0	0	1	0	0	1	0	0	1	$v_{aC2} - v_{cC2}$
\mathbf{C}	1 - 8 - 2	0	0	1	0	0	1	1	0	0	0	0	1	0	1	0	0	1	0	$v_{aC2} - v_{cC2}$
\mathbf{C}	1 - 8 - 3	0	0	1	0	0	1	1	0	0	0	0	1	1	0	0	1	0	0	$v_{aC2} - v_{cC2}$
\mathbf{C}	1 - 8 - 4	0	0	1	0	0	1	1	0	0	0	0	1	0	0	1	0	1	0	$v_{aC2} - v_{cC2} + v_{cC3} - v_{bC3}$
\mathbf{C}	1 - 8 - 5	0	0	1	0	0	1	1	0	0	0	0	1	0	0	1	1	0	0	$v_{aC2} - v_{cC2} + v_{cC3} - v_{aC3}$
\mathbf{C}	1 - 8 - 6	0	0	1	0	0	1	1	0	0	0	0	1	0	1	0	0	0	1	$v_{aC2} - v_{cC2} + v_{bC3} - v_{cC3}$
\mathbf{C}	1 - 8 - 7	0	0	1	0	0	1	1	0	0	0	0	1	0	1	0	1	0	0	$v_{aC2} - v_{cC2} + v_{bC3} - v_{aC3}$
\mathbf{C}	1 - 8 - 8	0	0	1	0	0	1	1	0	0	0	0	1	1	0	0	0	0	1	$v_{aC2} - v_{cC2} + v_{aC3} - v_{cC3}$
\mathbf{C}	1 - 8 - 9	0	0	1	0	0	1	1	0	0	0	0	1	1	0	0	0	1	0	$v_{aC2} - v_{cC2} + v_{aC3} - v_{bC3}$
\mathbf{C}	1 - 9 - 1	0	0	1	0	0	1	1	0	0	0	1	0	0	0	1	0	0	1	$v_{aC2} - v_{bC2}$
\mathbf{C}	1 - 9 - 2	0	0	1	0	0	1	1	0	0	0	1	0	0	1	0	0	1	0	$v_{aC2} - v_{bC2}$
\mathbf{C}	1 - 9 - 3	0	0	1	0	0	1	1	0	0	0	1	0	1	0	0	1	0	0	$v_{aC2} - v_{bC2}$
\mathbf{C}	1 - 9 - 4	0	0	1	0	0	1	1	0	0	0	1	0	0	0	1	0	1	0	$v_{aC2} - v_{bC2} + v_{cC3} - v_{bC3}$
\mathbf{C}	1 - 9 - 5	0	0	1	0	0	1	1	0	0	0	1	0	0	0	1	1	0	0	$v_{aC2} - v_{bC2} + v_{cC3} - v_{aC3}$
\mathbf{C}	1 - 9 - 6	0	0	1	0	0	1	1	0	0	0	1	0	0	1	0	0	0	1	$v_{aC2} - v_{bC2} + v_{bC3} - v_{cC3}$
С	1 - 9 - 7	0	0	1	0	0	1	1	0	0	0	1	0	0	1	0	1	0	0	$v_{aC2} - v_{bC2} + v_{bC3} - v_{aC3}$
С	1 - 9 - 8	0	0	1	0	0	1	1	0	0	0	1	0	1	0	0	0	0	1	$v_{aC2} - v_{bC2} + v_{aC3} - v_{cC3}$
\mathbf{C}	1 - 9 - 9	0	0	1	0	0	1	1	0	0	0	1	0	1	0	0	0	1	0	$v_{aC2} - v_{bC2} + v_{aC3} - v_{bC3}$

Tabla 72: Estados válidos de conmutación de cada convertidor matricial 3x1

				C_1						C_2						C_3				
Fase	Est. conmut.	S_1	S_2	S_3	S_4	S_5	S_6	S_1	S_2	S_3	S_4	S_5	S_6	S_1	S_2	S_3	S_4	S_5	S_6	v_{xn}
С	2 - 1 - 1	0	1	0	0	1	0	0	0	1	0	0	1	0	0	1	0	0	1	0
\mathbf{C}	2 - 1 - 2	0	1	0	0	1	0	0	0	1	0	0	1	0	1	0	0	1	0	0
\mathbf{C}	2 - 1 - 3	0	1	0	0	1	0	0	0	1	0	0	1	1	0	0	1	0	0	0
С	2 - 1 - 4	0	1	0	0	1	0	0	0	1	0	0	1	0	0	1	0	1	0	$v_{cC3} - v_{bC3}$
С	2 - 1 - 5	0	1	0	0	1	0	0	0	1	0	0	1	0	0	1	1	0	0	$v_{cC3} - v_{aC3}$
С	2 - 1 - 6	0	1	0	0	1	0	0	0	1	0	0	1	0	1	0	0	0	1	$v_{bC3} - v_{cC3}$
С	2 - 1 - 7	0	1	0	0	1	0	0	0	1	0	0	1	0	1	0	1	0	0	$v_{bC3} - v_{aC3}$
С	2 - 1 - 8	0	1	0	0	1	0	0	0	1	0	0	1	1	0	0	0	0	1	$v_{aC3} - v_{cC3}$
С	2 - 1 - 9	0	1	0	0	1	0	0	0	1	0	0	1	1	0	0	0	1	0	$v_{aC3} - v_{bC3}$
С	2 - 2 - 1	0	1	0	0	1	0	0	1	0	0	1	0	0	0	1	0	0	1	0
С	2 - 2 - 2	0	1	0	0	1	0	0	1	0	0	1	0	0	1	0	0	1	0	0
С	2 - 2 - 3	0	1	0	0	1	0	0	1	0	0	1	0	1	0	0	1	0	0	0
С	2 - 2 - 4	0	1	0	0	1	0	0	1	0	0	1	0	0	0	1	0	1	0	$v_{cC3} - v_{bC3}$
С	2 - 2 - 5	0	1	0	0	1	0	0	1	0	0	1	0	0	0	1	1	0	0	$v_{cC3} - v_{aC3}$
С	2 - 2 - 6	0	1	0	0	1	0	0	1	0	0	1	0	0	1	0	0	0	1	$v_{bC3} - v_{cC3}$
С	2 - 2 - 7	0	1	0	0	1	0	0	1	0	0	1	0	0	1	0	1	0	0	$v_{bC3} - v_{aC3}$
С	2 - 2 - 8	0	1	0	0	1	0	0	1	0	0	1	0	1	0	0	0	0	1	$v_{aC3} - v_{cC3}$
С	2 - 2 - 9	0	1	0	0	1	0	0	1	0	0	1	0	1	0	0	0	1	0	$v_{aC3} - v_{bC3}$
С	2 - 3 - 1	0	1	0	0	1	0	1	0	0	1	0	0	0	0	1	0	0	1	0
С	2 - 3 - 2	0	1	0	0	1	0	1	0	0	1	0	0	0	1	0	0	1	0	0
С	2 - 3 - 3	0	1	0	0	1	0	1	0	0	1	0	0	1	0	0	1	0	0	0
\mathbf{C}	2 - 3 - 4	0	1	0	0	1	0	1	0	0	1	0	0	0	0	1	0	1	0	$v_{cC3} - v_{bC3}$
\mathbf{C}	2 - 3 - 5	0	1	0	0	1	0	1	0	0	1	0	0	0	0	1	1	0	0	$v_{cC3} - v_{aC3}$
С	2 - 3 - 6	0	1	0	0	1	0	1	0	0	1	0	0	0	1	0	0	0	1	$v_{bC3} - v_{cC3}$
\mathbf{C}	2 - 3 - 7	0	1	0	0	1	0	1	0	0	1	0	0	0	1	0	1	0	0	$v_{bC3} - v_{aC3}$
\mathbf{C}	2 - 3 - 8	0	1	0	0	1	0	1	0	0	1	0	0	1	0	0	0	0	1	$v_{aC3} - v_{cC3}$
С	2 - 3 - 9	0	1	0	0	1	0	1	0	0	1	0	0	1	0	0	0	1	0	$v_{aC3} - v_{bC3}$

Tabla 73: Estados válidos de conmutación de cada convertidor matricial $3\mathrm{x}1$

				C_1						C_2						C_3				
Fase	Est. conmut.	S_1	S_2	S_3	S_4	S_5	S_6	S_1	S_2	S_3	S_4	S_5	S_6	S_1	S_2	S_3	S_4	S_5	S_6	v_{xn}
С	2 - 4 - 1	0	1	0	0	1	0	0	0	1	0	1	0	0	0	1	0	0	1	$v_{cC2} - v_{bC2}$
\mathbf{C}	2 - 4 - 2	0	1	0	0	1	0	0	0	1	0	1	0	0	1	0	0	1	0	$v_{cC2} - v_{bC2}$
\mathbf{C}	2 - 4 - 3	0	1	0	0	1	0	0	0	1	0	1	0	1	0	0	1	0	0	$v_{cC2} - v_{bC2}$
\mathbf{C}	2 - 4 - 4	0	1	0	0	1	0	0	0	1	0	1	0	0	0	1	0	1	0	$v_{cC2} - v_{bC2} + v_{cC3} - v_{bC3}$
\mathbf{C}	2 - 4 - 5	0	1	0	0	1	0	0	0	1	0	1	0	0	0	1	1	0	0	$v_{cC2} - v_{bC2} + v_{cC3} - v_{aC3}$
\mathbf{C}	2 - 4 - 6	0	1	0	0	1	0	0	0	1	0	1	0	0	1	0	0	0	1	$v_{cC2} - v_{bC2} + v_{bC3} - v_{cC3}$
\mathbf{C}	2 - 4 - 7	0	1	0	0	1	0	0	0	1	0	1	0	0	1	0	1	0	0	$v_{cC2} - v_{bC2} + v_{bC3} - v_{aC3}$
\mathbf{C}	2 - 4 - 8	0	1	0	0	1	0	0	0	1	0	1	0	1	0	0	0	0	1	$v_{cC2} - v_{bC2} + v_{aC3} - v_{cC3}$
\mathbf{C}	2 - 4 - 9	0	1	0	0	1	0	0	0	1	0	1	0	1	0	0	0	1	0	$v_{cC2} - v_{bC2} + v_{aC3} - v_{bC3}$
\mathbf{C}	2 - 5 - 1	0	1	0	0	1	0	0	0	1	1	0	0	0	0	1	0	0	1	$v_{cC2} - v_{aC2}$
\mathbf{C}	2 - 5 - 2	0	1	0	0	1	0	0	0	1	1	0	0	0	1	0	0	1	0	$v_{cC2} - v_{aC2}$
\mathbf{C}	2 - 5 - 3	0	1	0	0	1	0	0	0	1	1	0	0	1	0	0	1	0	0	$v_{cC2} - v_{aC2}$
\mathbf{C}	2 - 5 - 4	0	1	0	0	1	0	0	0	1	1	0	0	0	0	1	0	1	0	$v_{cC2} - v_{aC2} + v_{cC3} - v_{bC3}$
\mathbf{C}	2 - 5 - 5	0	1	0	0	1	0	0	0	1	1	0	0	0	0	1	1	0	0	$v_{cC2} - v_{aC2} + v_{cC3} - v_{aC3}$
\mathbf{C}	2 - 5 - 6	0	1	0	0	1	0	0	0	1	1	0	0	0	1	0	0	0	1	$v_{cC2} - v_{aC2} + v_{bC3} - v_{cC3}$
\mathbf{C}	2 - 5 - 7	0	1	0	0	1	0	0	0	1	1	0	0	0	1	0	1	0	0	$v_{cC2} - v_{aC2} + v_{bC3} - v_{aC3}$
\mathbf{C}	2 - 5 - 8	0	1	0	0	1	0	0	0	1	1	0	0	1	0	0	0	0	1	$v_{cC2} - v_{aC2} + v_{aC3} - v_{cC3}$
\mathbf{C}	2 - 5 - 9	0	1	0	0	1	0	0	0	1	1	0	0	1	0	0	0	1	0	$v_{cC2} - v_{aC2} + v_{aC3} - v_{bC3}$
\mathbf{C}	2 - 6 - 1	0	1	0	0	1	0	0	1	0	0	0	1	0	0	1	0	0	1	$v_{bC2} - v_{cC2}$
\mathbf{C}	2 - 6 - 2	0	1	0	0	1	0	0	1	0	0	0	1	0	1	0	0	1	0	$v_{bC2} - v_{cC2}$
\mathbf{C}	2 - 6 - 3	0	1	0	0	1	0	0	1	0	0	0	1	1	0	0	1	0	0	$v_{bC2} - v_{cC2}$
\mathbf{C}	2 - 6 - 4	0	1	0	0	1	0	0	1	0	0	0	1	0	0	1	0	1	0	$v_{bC2} - v_{cC2} + v_{cC3} - v_{bC3}$
\mathbf{C}	2 - 6 - 5	0	1	0	0	1	0	0	1	0	0	0	1	0	0	1	1	0	0	$v_{bC2} - v_{cC2} + v_{cC3} - v_{aC3}$
\mathbf{C}	2 - 6 - 6	0	1	0	0	1	0	0	1	0	0	0	1	0	1	0	0	0	1	$v_{bC2} - v_{cC2} + v_{bC3} - v_{cC3}$
\mathbf{C}	2 - 6 - 7	0	1	0	0	1	0	0	1	0	0	0	1	0	1	0	1	0	0	$v_{bC2} - v_{cC2} + v_{bC3} - v_{aC3}$
С	2 - 6 - 8	0	1	0	0	1	0	0	1	0	0	0	1	1	0	0	0	0	1	$v_{bC2} - v_{cC2} + v_{aC3} - v_{cC3}$
\mathbf{C}	2 - 6 - 9	0	1	0	0	1	0	0	1	0	0	0	1	1	0	0	0	1	0	$v_{bC2} - v_{cC2} + v_{aC2} - v_{bC2}$

Tabla 74: Estados válidos de conmutación de cada convertidor matricial 3x1

				C_1						C_2						C_3				
Fase	Est. conmut.	S_1	S_2	S_3	S_4	S_5	S_6	S_1	S_2	S_3	S_4	S_5	S_6	S_1	S_2	S_3	S_4	S_5	S_6	v_{xn}
С	2 - 7 - 1	0	1	0	0	1	0	0	1	0	1	0	0	0	0	1	0	0	1	$v_{bC2} - v_{aC2}$
\mathbf{C}	2 - 7 - 2	0	1	0	0	1	0	0	1	0	1	0	0	0	1	0	0	1	0	$v_{bC2} - v_{aC2}$
\mathbf{C}	2 - 7 - 3	0	1	0	0	1	0	0	1	0	1	0	0	1	0	0	1	0	0	$v_{bC2} - v_{aC2}$
\mathbf{C}	2 - 7 - 4	0	1	0	0	1	0	0	1	0	1	0	0	0	0	1	0	1	0	$v_{bC2} - v_{aC2} + v_{cC3} - v_{bC3}$
\mathbf{C}	2 - 7 - 5	0	1	0	0	1	0	0	1	0	1	0	0	0	0	1	1	0	0	$v_{bC2} - v_{aC2} + v_{cC3} - v_{aC3}$
\mathbf{C}	2 - 7 - 6	0	1	0	0	1	0	0	1	0	1	0	0	0	1	0	0	0	1	$v_{bC2} - v_{aC2} + v_{bC3} - v_{cC3}$
\mathbf{C}	2 - 7 - 7	0	1	0	0	1	0	0	1	0	1	0	0	0	1	0	1	0	0	$v_{bC2} - v_{aC2} + v_{bC3} - v_{aC3}$
\mathbf{C}	2 - 7 - 8	0	1	0	0	1	0	0	1	0	1	0	0	1	0	0	0	0	1	$v_{bC2} - v_{aC2} + v_{aC3} - v_{cC3}$
\mathbf{C}	2 - 7 - 9	0	1	0	0	1	0	0	1	0	1	0	0	1	0	0	0	1	0	$v_{bC2} - v_{aC2} + v_{aC3} - v_{bC3}$
\mathbf{C}	2 - 8 - 1	0	1	0	0	1	0	1	0	0	0	0	1	0	0	1	0	0	1	$v_{aC2} - v_{cC2}$
\mathbf{C}	2 - 8 - 2	0	1	0	0	1	0	1	0	0	0	0	1	0	1	0	0	1	0	$v_{aC2} - v_{cC2}$
\mathbf{C}	2 - 8 - 3	0	1	0	0	1	0	1	0	0	0	0	1	1	0	0	1	0	0	$v_{aC2} - v_{cC2}$
\mathbf{C}	2 - 8 - 4	0	1	0	0	1	0	1	0	0	0	0	1	0	0	1	0	1	0	$v_{aC2} - v_{cC2} + v_{cC3} - v_{bC3}$
\mathbf{C}	2 - 8 - 5	0	1	0	0	1	0	1	0	0	0	0	1	0	0	1	1	0	0	$v_{aC2} - v_{cC2} + v_{cC3} - v_{aC3}$
\mathbf{C}	2 - 8 - 6	0	1	0	0	1	0	1	0	0	0	0	1	0	1	0	0	0	1	$v_{aC2} - v_{cC2} + v_{bC3} - v_{cC3}$
\mathbf{C}	2 - 8 - 7	0	1	0	0	1	0	1	0	0	0	0	1	0	1	0	1	0	0	$v_{aC2} - v_{cC2} + v_{bC3} - v_{aC3}$
\mathbf{C}	2 - 8 - 8	0	1	0	0	1	0	1	0	0	0	0	1	1	0	0	0	0	1	$v_{aC2} - v_{cC2} + v_{aC3} - v_{cC3}$
\mathbf{C}	2 - 8 - 9	0	1	0	0	1	0	1	0	0	0	0	1	1	0	0	0	1	0	$v_{aC2} - v_{cC2} + v_{aC3} - v_{bC3}$
\mathbf{C}	2 - 9 - 1	0	1	0	0	1	0	1	0	0	0	1	0	0	0	1	0	0	1	$v_{aC2} - v_{bC2}$
\mathbf{C}	2 - 9 - 2	0	1	0	0	1	0	1	0	0	0	1	0	0	1	0	0	1	0	$v_{aC2} - v_{bC2}$
\mathbf{C}	2 - 9 - 3	0	1	0	0	1	0	1	0	0	0	1	0	1	0	0	1	0	0	$v_{aC2} - v_{bC2}$
\mathbf{C}	2 - 9 - 4	0	1	0	0	1	0	1	0	0	0	1	0	0	0	1	0	1	0	$v_{aC2} - v_{bC2} + v_{cC3} - v_{bC3}$
\mathbf{C}	2 - 9 - 5	0	1	0	0	1	0	1	0	0	0	1	0	0	0	1	1	0	0	$v_{aC2} - v_{bC2} + v_{cC3} - v_{aC3}$
\mathbf{C}	2 - 9 - 6	0	1	0	0	1	0	1	0	0	0	1	0	0	1	0	0	0	1	$v_{aC2} - v_{bC2} + v_{bC3} - v_{cC3}$
С	2 - 9 - 7	0	1	0	0	1	0	1	0	0	0	1	0	0	1	0	1	0	0	$v_{aC2} - v_{bC2} + v_{bC3} - v_{aC3}$
С	2 - 9 - 8	0	1	0	0	1	0	1	0	0	0	1	0	1	0	0	0	0	1	$v_{aC2} - v_{bC2} + v_{aC3} - v_{cC3}$
\mathbf{C}	2 - 9 - 9	0	1	0	0	1	0	1	0	0	0	1	0	1	0	0	0	1	0	$v_{aC2} - v_{bC2} + v_{aC3} - v_{bC3}$

Tabla 75: Estados válidos de conmutación de cada convertidor matricial 3x1

				C_1						C_2						C_3				
Fase	Est. conmut.	S_1	S_2	S_3	S_4	S_5	S_6	S_1	S_2	S_3	S_4	S_5	S_6	S_1	S_2	S_3	S_4	S_5	S_6	v_{xn}
С	3 - 1 - 1	1	0	0	1	0	0	0	0	1	0	0	1	0	0	1	0	0	1	0
С	3 - 1 - 2	1	0	0	1	0	0	0	0	1	0	0	1	0	1	0	0	1	0	0
С	3 - 1 - 3	1	0	0	1	0	0	0	0	1	0	0	1	1	0	0	1	0	0	0
С	3 - 1 - 4	1	0	0	1	0	0	0	0	1	0	0	1	0	0	1	0	1	0	$v_{cC3} - v_{bC3}$
С	3 - 1 - 5	1	0	0	1	0	0	0	0	1	0	0	1	0	0	1	1	0	0	$v_{cC3} - v_{aC3}$
\mathbf{C}	3 - 1 - 6	1	0	0	1	0	0	0	0	1	0	0	1	0	1	0	0	0	1	$v_{bC3} - v_{cC3}$
\mathbf{C}	3 - 1 - 7	1	0	0	1	0	0	0	0	1	0	0	1	0	1	0	1	0	0	$v_{bC3} - v_{aC3}$
\mathbf{C}	3 - 1 - 8	1	0	0	1	0	0	0	0	1	0	0	1	1	0	0	0	0	1	$v_{aC3} - v_{cC3}$
С	3 - 1 - 9	1	0	0	1	0	0	0	0	1	0	0	1	1	0	0	0	1	0	$v_{aC3} - v_{bC3}$
\mathbf{C}	3 - 2 - 1	1	0	0	1	0	0	0	1	0	0	1	0	0	0	1	0	0	1	0
\mathbf{C}	3 - 2 - 2	1	0	0	1	0	0	0	1	0	0	1	0	0	1	0	0	1	0	0
С	3 - 2 - 3	1	0	0	1	0	0	0	1	0	0	1	0	1	0	0	1	0	0	0
С	3 - 2 - 4	1	0	0	1	0	0	0	1	0	0	1	0	0	0	1	0	1	0	$v_{cC3} - v_{bC3}$
\mathbf{C}	3 - 2 - 5	1	0	0	1	0	0	0	1	0	0	1	0	0	0	1	1	0	0	$v_{cC3} - v_{aC3}$
С	3 - 2 - 6	1	0	0	1	0	0	0	1	0	0	1	0	0	1	0	0	0	1	$v_{bC3} - v_{cC3}$
С	3 - 2 - 7	1	0	0	1	0	0	0	1	0	0	1	0	0	1	0	1	0	0	$v_{bC3} - v_{aC3}$
С	3 - 2 - 8	1	0	0	1	0	0	0	1	0	0	1	0	1	0	0	0	0	1	$v_{aC3} - v_{cC3}$
\mathbf{C}	3 - 2 - 9	1	0	0	1	0	0	0	1	0	0	1	0	1	0	0	0	1	0	$v_{aC3} - v_{bC3}$
\mathbf{C}	3 - 3 - 1	1	0	0	1	0	0	1	0	0	1	0	0	0	0	1	0	0	1	0
\mathbf{C}	3 - 3 - 2	1	0	0	1	0	0	1	0	0	1	0	0	0	1	0	0	1	0	0
\mathbf{C}	3 - 3 - 3	1	0	0	1	0	0	1	0	0	1	0	0	1	0	0	1	0	0	0
С	3 - 3 - 4	1	0	0	1	0	0	1	0	0	1	0	0	0	0	1	0	1	0	$v_{cC3} - v_{bC3}$
\mathbf{C}	3 - 3 - 5	1	0	0	1	0	0	1	0	0	1	0	0	0	0	1	1	0	0	$v_{cC3} - v_{aC3}$
\mathbf{C}	3 - 3 - 6	1	0	0	1	0	0	1	0	0	1	0	0	0	1	0	0	0	1	$v_{bC3} - v_{cC3}$
\mathbf{C}	3 - 3 - 7	1	0	0	1	0	0	1	0	0	1	0	0	0	1	0	1	0	0	$v_{bC3} - v_{aC3}$
С	3 - 3 - 8	1	0	0	1	0	0	1	0	0	1	0	0	1	0	0	0	0	1	$v_{aC3} - v_{cC3}$
С	3 - 3 - 9	1	0	0	1	0	0	1	0	0	1	0	0	1	0	0	0	1	0	$v_{aC3} - v_{bC3}$

Tabla 76: Estados válidos de conmutación de cada convertidor matricial $3\mathrm{x}1$

				C_1						C_2						C_3				
Fase	Est. conmut.	S_1	S_2	S_3	S_4	S_5	S_6	S_1	S_2	S_3	S_4	S_5	S_6	S_1	S_2	S_3	S_4	S_5	S_6	v_{xn}
С	3 - 4 - 1	1	0	0	1	0	0	0	0	1	0	1	0	0	0	1	0	0	1	$v_{cC2} - v_{bC2}$
\mathbf{C}	3 - 4 - 2	1	0	0	1	0	0	0	0	1	0	1	0	0	1	0	0	1	0	$v_{cC2} - v_{bC2}$
\mathbf{C}	3 - 4 - 3	1	0	0	1	0	0	0	0	1	0	1	0	1	0	0	1	0	0	$v_{cC2} - v_{bC2}$
\mathbf{C}	3 - 4 - 4	1	0	0	1	0	0	0	0	1	0	1	0	0	0	1	0	1	0	$v_{cC2} - v_{bC2} + v_{cC3} - v_{bC3}$
\mathbf{C}	3 - 4 - 5	1	0	0	1	0	0	0	0	1	0	1	0	0	0	1	1	0	0	$v_{cC2} - v_{bC2} + v_{cC3} - v_{aC3}$
\mathbf{C}	3 - 4 - 6	1	0	0	1	0	0	0	0	1	0	1	0	0	1	0	0	0	1	$v_{cC2} - v_{bC2} + v_{bC3} - v_{cC3}$
\mathbf{C}	3 - 4 - 7	1	0	0	1	0	0	0	0	1	0	1	0	0	1	0	1	0	0	$v_{cC2} - v_{bC2} + v_{bC3} - v_{aC3}$
\mathbf{C}	3 - 4 - 8	1	0	0	1	0	0	0	0	1	0	1	0	1	0	0	0	0	1	$v_{cC2} - v_{bC2} + v_{aC3} - v_{cC3}$
\mathbf{C}	3 - 4 - 9	1	0	0	1	0	0	0	0	1	0	1	0	1	0	0	0	1	0	$v_{cC2} - v_{bC2} + v_{aC3} - v_{bC3}$
\mathbf{C}	3 - 5 - 1	1	0	0	1	0	0	0	0	1	1	0	0	0	0	1	0	0	1	$v_{cC2} - v_{aC2}$
\mathbf{C}	3 - 5 - 2	1	0	0	1	0	0	0	0	1	1	0	0	0	1	0	0	1	0	$v_{cC2} - v_{aC2}$
\mathbf{C}	3 - 5 - 3	1	0	0	1	0	0	0	0	1	1	0	0	1	0	0	1	0	0	$v_{cC2} - v_{aC2}$
\mathbf{C}	3 - 5 - 4	1	0	0	1	0	0	0	0	1	1	0	0	0	0	1	0	1	0	$v_{cC2} - v_{aC2} + v_{cC3} - v_{bC3}$
\mathbf{C}	3 - 5 - 5	1	0	0	1	0	0	0	0	1	1	0	0	0	0	1	1	0	0	$v_{cC2} - v_{aC2} + v_{cC3} - v_{aC3}$
\mathbf{C}	3 - 5 - 6	1	0	0	1	0	0	0	0	1	1	0	0	0	1	0	0	0	1	$v_{cC2} - v_{aC2} + v_{bC3} - v_{cC3}$
\mathbf{C}	3 - 5 - 7	1	0	0	1	0	0	0	0	1	1	0	0	0	1	0	1	0	0	$v_{cC2} - v_{aC2} + v_{bC3} - v_{aC3}$
\mathbf{C}	3 - 5 - 8	1	0	0	1	0	0	0	0	1	1	0	0	1	0	0	0	0	1	$v_{cC2} - v_{aC2} + v_{aC3} - v_{cC3}$
\mathbf{C}	3 - 5 - 9	1	0	0	1	0	0	0	0	1	1	0	0	1	0	0	0	1	0	$v_{cC2} - v_{aC2} + v_{aC3} - v_{bC3}$
\mathbf{C}	3 - 6 - 1	1	0	0	1	0	0	0	1	0	0	0	1	0	0	1	0	0	1	$v_{bC2} - v_{cC2}$
\mathbf{C}	3 - 6 - 2	1	0	0	1	0	0	0	1	0	0	0	1	0	1	0	0	1	0	$v_{bC2} - v_{cC2}$
\mathbf{C}	3 - 6 - 3	1	0	0	1	0	0	0	1	0	0	0	1	1	0	0	1	0	0	$v_{bC2} - v_{cC2}$
\mathbf{C}	3 - 6 - 4	1	0	0	1	0	0	0	1	0	0	0	1	0	0	1	0	1	0	$v_{bC2} - v_{cC2} + v_{cC3} - v_{bC3}$
\mathbf{C}	3 - 6 - 5	1	0	0	1	0	0	0	1	0	0	0	1	0	0	1	1	0	0	$v_{bC2} - v_{cC2} + v_{cC3} - v_{aC3}$
\mathbf{C}	3 - 6 - 6	1	0	0	1	0	0	0	1	0	0	0	1	0	1	0	0	0	1	$v_{bC2} - v_{cC2} + v_{bC3} - v_{cC3}$
\mathbf{C}	3 - 6 - 7	1	0	0	1	0	0	0	1	0	0	0	1	0	1	0	1	0	0	$v_{bC2} - v_{cC2} + v_{bC3} - v_{aC3}$
\mathbf{C}	3 - 6 - 8	1	0	0	1	0	0	0	1	0	0	0	1	1	0	0	0	0	1	$v_{bC2} - v_{cC2} + v_{aC3} - v_{cC3}$
\mathbf{C}	3 - 6 - 9	1	0	0	1	0	0	0	1	0	0	0	1	1	0	0	0	1	0	$v_{bC2} - v_{cC2} + v_{aC2} - v_{bC2}$

Tabla 77: Estados válidos de conmutación de cada convertidor matricial 3x1

				C_1						C_2						C_3				
Fase	Est. conmut.	S_1	S_2	S_3	S_4	S_5	S_6	S_1	S_2	S_3	S_4	S_5	S_6	S_1	S_2	S_3	S_4	S_5	S_6	v_{xn}
С	3 - 7 - 1	1	0	0	1	0	0	0	1	0	1	0	0	0	0	1	0	0	1	$v_{bC2} - v_{aC2}$
\mathbf{C}	3 - 7 - 2	1	0	0	1	0	0	0	1	0	1	0	0	0	1	0	0	1	0	$v_{bC2} - v_{aC2}$
\mathbf{C}	3 - 7 - 3	1	0	0	1	0	0	0	1	0	1	0	0	1	0	0	1	0	0	$v_{bC2} - v_{aC2}$
\mathbf{C}	3 - 7 - 4	1	0	0	1	0	0	0	1	0	1	0	0	0	0	1	0	1	0	$v_{bC2} - v_{aC2} + v_{cC3} - v_{bC3}$
\mathbf{C}	3 - 7 - 5	1	0	0	1	0	0	0	1	0	1	0	0	0	0	1	1	0	0	$v_{bC2} - v_{aC2} + v_{cC3} - v_{aC3}$
\mathbf{C}	3 - 7 - 6	1	0	0	1	0	0	0	1	0	1	0	0	0	1	0	0	0	1	$v_{bC2} - v_{aC2} + v_{bC3} - v_{cC3}$
\mathbf{C}	3 - 7 - 7	1	0	0	1	0	0	0	1	0	1	0	0	0	1	0	1	0	0	$v_{bC2} - v_{aC2} + v_{bC3} - v_{aC3}$
\mathbf{C}	3 - 7 - 8	1	0	0	1	0	0	0	1	0	1	0	0	1	0	0	0	0	1	$v_{bC2} - v_{aC2} + v_{aC3} - v_{cC3}$
\mathbf{C}	3 - 7 - 9	1	0	0	1	0	0	0	1	0	1	0	0	1	0	0	0	1	0	$v_{bC2} - v_{aC2} + v_{aC3} - v_{bC3}$
\mathbf{C}	3 - 8 - 1	1	0	0	1	0	0	1	0	0	0	0	1	0	0	1	0	0	1	$v_{aC2} - v_{cC2}$
\mathbf{C}	3 - 8 - 2	1	0	0	1	0	0	1	0	0	0	0	1	0	1	0	0	1	0	$v_{aC2} - v_{cC2}$
\mathbf{C}	3 - 8 - 3	1	0	0	1	0	0	1	0	0	0	0	1	1	0	0	1	0	0	$v_{aC2} - v_{cC2}$
\mathbf{C}	3 - 8 - 4	1	0	0	1	0	0	1	0	0	0	0	1	0	0	1	0	1	0	$v_{aC2} - v_{cC2} + v_{cC3} - v_{bC3}$
\mathbf{C}	3 - 8 - 5	1	0	0	1	0	0	1	0	0	0	0	1	0	0	1	1	0	0	$v_{aC2} - v_{cC2} + v_{cC3} - v_{aC3}$
\mathbf{C}	3 - 8 - 6	1	0	0	1	0	0	1	0	0	0	0	1	0	1	0	0	0	1	$v_{aC2} - v_{cC2} + v_{bC3} - v_{cC3}$
\mathbf{C}	3 - 8 - 7	1	0	0	1	0	0	1	0	0	0	0	1	0	1	0	1	0	0	$v_{aC2} - v_{cC2} + v_{bC3} - v_{aC3}$
\mathbf{C}	3 - 8 - 8	1	0	0	1	0	0	1	0	0	0	0	1	1	0	0	0	0	1	$v_{aC2} - v_{cC2} + v_{aC3} - v_{cC3}$
\mathbf{C}	3 - 8 - 9	1	0	0	1	0	0	1	0	0	0	0	1	1	0	0	0	1	0	$v_{aC2} - v_{cC2} + v_{aC3} - v_{bC3}$
\mathbf{C}	3 - 9 - 1	1	0	0	1	0	0	1	0	0	0	1	0	0	0	1	0	0	1	$v_{aC2} - v_{bC2}$
\mathbf{C}	3 - 9 - 2	1	0	0	1	0	0	1	0	0	0	1	0	0	1	0	0	1	0	$v_{aC2} - v_{bC2}$
\mathbf{C}	3 - 9 - 3	1	0	0	1	0	0	1	0	0	0	1	0	1	0	0	1	0	0	$v_{aC2} - v_{bC2}$
\mathbf{C}	3 - 9 - 4	1	0	0	1	0	0	1	0	0	0	1	0	0	0	1	0	1	0	$v_{aC2} - v_{bC2} + v_{cC3} - v_{bC3}$
\mathbf{C}	3 - 9 - 5	1	0	0	1	0	0	1	0	0	0	1	0	0	0	1	1	0	0	$v_{aC2} - v_{bC2} + v_{cC3} - v_{aC3}$
\mathbf{C}	3 - 9 - 6	1	0	0	1	0	0	1	0	0	0	1	0	0	1	0	0	0	1	$v_{aC2} - v_{bC2} + v_{bC3} - v_{cC3}$
С	3 - 9 - 7	1	0	0	1	0	0	1	0	0	0	1	0	0	1	0	1	0	0	$v_{aC2} - v_{bC2} + v_{bC3} - v_{aC3}$
\mathbf{C}	3 - 9 - 8	1	0	0	1	0	0	1	0	0	0	1	0	1	0	0	0	0	1	$v_{aC2} - v_{bC2} + v_{aC3} - v_{cC3}$
\mathbf{C}	3 - 9 - 9	1	0	0	1	0	0	1	0	0	0	1	0	1	0	0	0	1	0	$v_{aC2} - v_{bC2} + v_{aC3} - v_{bC3}$

Tabla 78: Estados válidos de conmutación de cada convertidor matricial 3x1

				C_1						C_2						C_3				
Fase	Est. conmut.	S_1	S_2	S_3	S_4	S_5	S_6	S_1	S_2	S_3	S_4	S_5	S_6	S_1	S_2	S_3	S_4	S_5	S_6	v_{xn}
\mathbf{C}	4 - 1 - 1	0	0	1	0	1	0	0	0	1	0	0	1	0	0	1	0	0	1	$v_{cC1} - v_{bC1}$
\mathbf{C}	4 - 1 - 2	0	0	1	0	1	0	0	0	1	0	0	1	0	1	0	0	1	0	$v_{cC1} - v_{bC1}$
\mathbf{C}	4 - 1 - 3	0	0	1	0	1	0	0	0	1	0	0	1	1	0	0	1	0	0	$v_{cC1} - v_{bC1}$
\mathbf{C}	4 - 1 - 4	0	0	1	0	1	0	0	0	1	0	0	1	0	0	1	0	1	0	$v_{cC1} - v_{bC1} + v_{cC3} - v_{bC3}$
\mathbf{C}	4 - 1 - 5	0	0	1	0	1	0	0	0	1	0	0	1	0	0	1	1	0	0	$v_{cC1} - v_{bC1} + v_{cC3} - v_{aC3}$
\mathbf{C}	4 - 1 - 6	0	0	1	0	1	0	0	0	1	0	0	1	0	1	0	0	0	1	$v_{cC1} - v_{bC1} + v_{bC3} - v_{cC3}$
\mathbf{C}	4 - 1 - 7	0	0	1	0	1	0	0	0	1	0	0	1	0	1	0	1	0	0	$v_{cC1} - v_{bC1} + v_{bC3} - v_{aC3}$
\mathbf{C}	4 - 1 - 8	0	0	1	0	1	0	0	0	1	0	0	1	1	0	0	0	0	1	$v_{cC1} - v_{bC1} + v_{aC3} - v_{cC3}$
\mathbf{C}	4 - 1 - 9	0	0	1	0	1	0	0	0	1	0	0	1	1	0	0	0	1	0	$v_{cC1} - v_{bC1} + v_{aC3} - v_{bC3}$
\mathbf{C}	4 - 2 - 1	0	0	1	0	1	0	0	1	0	0	1	0	0	0	1	0	0	1	$v_{cC1} - v_{bC1}$
\mathbf{C}	4 - 2 - 2	0	0	1	0	1	0	0	1	0	0	1	0	0	1	0	0	1	0	$v_{cC1} - v_{bC1}$
\mathbf{C}	4 - 2 - 3	0	0	1	0	1	0	0	1	0	0	1	0	1	0	0	1	0	0	$v_{cC1} - v_{bC1}$
\mathbf{C}	4 - 2 - 4	0	0	1	0	1	0	0	1	0	0	1	0	0	0	1	0	1	0	$v_{cC1} - v_{bC1} + v_{cC3} - v_{bC3}$
\mathbf{C}	4 - 2 - 5	0	0	1	0	1	0	0	1	0	0	1	0	0	0	1	1	0	0	$v_{cC1} - v_{bC1} + v_{cC3} - v_{aC3}$
\mathbf{C}	4 - 2 - 6	0	0	1	0	1	0	0	1	0	0	1	0	0	1	0	0	0	1	$v_{cC1} - v_{bC1} + v_{bC3} - v_{cC3}$
\mathbf{C}	4 - 2 - 7	0	0	1	0	1	0	0	1	0	0	1	0	0	1	0	1	0	0	$v_{cC1} - v_{bC1} + v_{bC3} - v_{aC3}$
\mathbf{C}	4 - 2 - 8	0	0	1	0	1	0	0	1	0	0	1	0	1	0	0	0	0	1	$v_{cC1} - v_{bC1} + v_{aC3} - v_{cC3}$
\mathbf{C}	4 - 2 - 9	0	0	1	0	1	0	0	1	0	0	1	0	1	0	0	0	1	0	$v_{cC1} - v_{bC1} + v_{aC3} - v_{bC3}$
\mathbf{C}	4 - 3 - 1	0	0	1	0	1	0	1	0	0	1	0	0	0	0	1	0	0	1	$v_{cC1} - v_{bC1}$
\mathbf{C}	4 - 3 - 2	0	0	1	0	1	0	1	0	0	1	0	0	0	1	0	0	1	0	$v_{cC1} - v_{bC1}$
\mathbf{C}	4 - 3 - 3	0	0	1	0	1	0	1	0	0	1	0	0	1	0	0	1	0	0	$v_{cC1} - v_{bC1}$
\mathbf{C}	4 - 3 - 4	0	0	1	0	1	0	1	0	0	1	0	0	0	0	1	0	1	0	$v_{cC1} - v_{bC1} + v_{cC3} - v_{bC3}$
\mathbf{C}	4 - 3 - 5	0	0	1	0	1	0	1	0	0	1	0	0	0	0	1	1	0	0	$v_{cC1} - v_{bC1} + v_{cC3} - v_{aC3}$
\mathbf{C}	4 - 3 - 6	0	0	1	0	1	0	1	0	0	1	0	0	0	1	0	0	0	1	$v_{cC1} - v_{bC1} + v_{bC3} - v_{cC3}$
С	4 - 3 - 7	0	0	1	0	1	0	1	0	0	1	0	0	0	1	0	1	0	0	$v_{cC1} - v_{bC1} + v_{bC3} - v_{aC3}$
\mathbf{C}	4 - 3 - 8	0	0	1	0	1	0	1	0	0	1	0	0	1	0	0	0	0	1	$v_{cC1} - v_{bC1} + v_{aC3} - v_{cC3}$
\mathbf{C}	4 - 3 - 9	0	0	1	0	1	0	1	0	0	1	0	0	1	0	0	0	1	0	$v_{cC1} - v_{bC1} + v_{aC3} - v_{bC3}$

Tabla 79: Estados válidos de conmutación de cada convertidor matricial 3x1

				C_1						C_2						C_3				
Fase	Est. conmut.	S_1	S_2	S_3	S_4	S_5	S_6	S_1	S_2	S_3	S_4	S_5	S_6	S_1	S_2	S_3	S_4	S_5	S_6	v_{xn}
С	4 - 4 - 1	0	0	1	0	1	0	0	0	1	0	1	0	0	0	1	0	0	1	$v_{cC1} - v_{bC1} + v_{cC2} - v_{bC2}$
\mathbf{C}	4 - 4 - 2	0	0	1	0	1	0	0	0	1	0	1	0	0	1	0	0	1	0	$v_{cC1} - v_{bC1} + v_{cC2} - v_{bC2}$
\mathbf{C}	4 - 4 - 3	0	0	1	0	1	0	0	0	1	0	1	0	1	0	0	1	0	0	$v_{cC1} - v_{bC1} + v_{cC2} - v_{bC2}$
\mathbf{C}	4 - 4 - 4	0	0	1	0	1	0	0	0	1	0	1	0	0	0	1	0	1	0	$v_{cC1} - v_{bC1} + v_{cC2} - v_{bC2} + v_{cC3} - v_{bC3}$
\mathbf{C}	4 - 4 - 5	0	0	1	0	1	0	0	0	1	0	1	0	0	0	1	1	0	0	$v_{cC1} - v_{bC1} + v_{cC2} - v_{bC2} + v_{cC3} - v_{aC3}$
\mathbf{C}	4 - 4 - 6	0	0	1	0	1	0	0	0	1	0	1	0	0	1	0	0	0	1	$v_{cC1} - v_{bC1} + v_{cC2} - v_{bC2} + v_{bC3} - v_{cC3}$
\mathbf{C}	4 - 4 - 7	0	0	1	0	1	0	0	0	1	0	1	0	0	1	0	1	0	0	$v_{cC1} - v_{bC1} + v_{cC2} - v_{bC2} + v_{bC3} - v_{aC3}$
\mathbf{C}	4 - 4 - 8	0	0	1	0	1	0	0	0	1	0	1	0	1	0	0	0	0	1	$v_{cC1} - v_{bC1} + v_{cC2} - v_{bC2} + v_{aC3} - v_{cC3}$
\mathbf{C}	4 - 4 - 9	0	0	1	0	1	0	0	0	1	0	1	0	1	0	0	0	1	0	$v_{cC1} - v_{bC1} + v_{cC2} - v_{bC2} + v_{aC3} - v_{bC3}$
\mathbf{C}	4 - 5 - 1	0	0	1	0	1	0	0	0	1	1	0	0	0	0	1	0	0	1	$v_{cC1} - v_{bC1} + v_{cC2} - v_{aC2}$
\mathbf{C}	4 - 5 - 2	0	0	1	0	1	0	0	0	1	1	0	0	0	1	0	0	1	0	$v_{cC1} - v_{bC1} + v_{cC2} - v_{aC2}$
\mathbf{C}	4 - 5 - 3	0	0	1	0	1	0	0	0	1	1	0	0	1	0	0	1	0	0	$v_{cC1} - v_{bC1} + v_{cC2} - v_{aC2}$
\mathbf{C}	4 - 5 - 4	0	0	1	0	1	0	0	0	1	1	0	0	0	0	1	0	1	0	$v_{cC1} - v_{bC1} + v_{cC2} - v_{aC2} + v_{cC3} - v_{bC3}$
\mathbf{C}	4 - 5 - 5	0	0	1	0	1	0	0	0	1	1	0	0	0	0	1	1	0	0	$v_{cC1} - v_{bC1} + v_{cC2} - v_{aC2} + v_{cC3} - v_{aC3}$
\mathbf{C}	4 - 5 - 6	0	0	1	0	1	0	0	0	1	1	0	0	0	1	0	0	0	1	$v_{cC1} - v_{bC1} + v_{cC2} - v_{aC2} + v_{bC3} - v_{cC3}$
\mathbf{C}	4 - 5 - 7	0	0	1	0	1	0	0	0	1	1	0	0	0	1	0	1	0	0	$v_{cC1} - v_{bC1} + v_{cC2} - v_{aC2} + v_{bC3} - v_{aC3}$
\mathbf{C}	4 - 5 - 8	0	0	1	0	1	0	0	0	1	1	0	0	1	0	0	0	0	1	$v_{cC1} - v_{bC1} + v_{cC2} - v_{aC2} + v_{aC3} - v_{cC3}$
\mathbf{C}	4 - 5 - 9	0	0	1	0	1	0	0	0	1	1	0	0	1	0	0	0	1	0	$v_{cC1} - v_{bC1} + v_{cC2} - v_{aC2} + v_{aC3} - v_{bC3}$
\mathbf{C}	4 - 6 - 1	0	0	1	0	1	0	0	1	0	0	0	1	0	0	1	0	0	1	$v_{cC1} - v_{bC1} + v_{bC2} - v_{cC2}$
\mathbf{C}	4 - 6 - 2	0	0	1	0	1	0	0	1	0	0	0	1	0	1	0	0	1	0	$v_{cC1} - v_{bC1} + v_{bC2} - v_{cC2}$
\mathbf{C}	4 - 6 - 3	0	0	1	0	1	0	0	1	0	0	0	1	1	0	0	1	0	0	$v_{cC1} - v_{bC1} + v_{bC2} - v_{cC2}$
\mathbf{C}	4 - 6 - 4	0	0	1	0	1	0	0	1	0	0	0	1	0	0	1	0	1	0	$v_{cC1} - v_{bC1} + v_{bC2} - v_{cC2} + v_{cC3} - v_{bC3}$
\mathbf{C}	4 - 6 - 5	0	0	1	0	1	0	0	1	0	0	0	1	0	0	1	1	0	0	$v_{cC1} - v_{bC1} + v_{bC2} - v_{cC2} + v_{cC3} - v_{aC3}$
\mathbf{C}	4 - 6 - 6	0	0	1	0	1	0	0	1	0	0	0	1	0	1	0	0	0	1	$v_{cC1} - v_{bC1} + v_{bC2} - v_{cC2} + v_{bC3} - v_{cC3}$
\mathbf{C}	4 - 6 - 7	0	0	1	0	1	0	0	1	0	0	0	1	0	1	0	1	0	0	$v_{cC1} - v_{bC1} + v_{bC2} - v_{cC2} + v_{bC3} - v_{aC3}$
\mathbf{C}	4 - 6 - 8	0	0	1	0	1	0	0	1	0	0	0	1	1	0	0	0	0	1	$v_{cC1} - v_{bC1} + v_{bC2} - v_{cC2} + v_{aC3} - v_{cC3}$
\mathbf{C}	4 - 6 - 9	0	0	1	0	1	0	0	1	0	0	0	1	1	0	0	0	1	0	$v_{cC1} - v_{bC1} + v_{bC2} - v_{cC2} + v_{aC2} - v_{bC2}$

Tabla 80: Estados válidos de conmutación de cada convertidor matricial 3x1

				C_1						C_2						C_3				
Fase	Est. conmut.	S_1	S_2	S_3	S_4	S_5	S_6	S_1	S_2	S_3	S_4	S_5	S_6	S_1	S_2	S_3	S_4	S_5	S_6	v_{xn}
С	4 - 7 - 1	0	0	1	0	1	0	0	1	0	1	0	0	0	0	1	0	0	1	$v_{cC1} - v_{bC1} + v_{bC2} - v_{aC2}$
С	4 - 7 - 2	0	0	1	0	1	0	0	1	0	1	0	0	0	1	0	0	1	0	$v_{cC1} - v_{bC1} + v_{bC2} - v_{aC2}$
С	4 - 7 - 3	0	0	1	0	1	0	0	1	0	1	0	0	1	0	0	1	0	0	$v_{cC1} - v_{bC1} + v_{bC2} - v_{aC2}$
С	4 - 7 - 4	0	0	1	0	1	0	0	1	0	1	0	0	0	0	1	0	1	0	$v_{cC1} - v_{bC1} + v_{bC2} - v_{aC2} + v_{cC3} - v_{bC3}$
С	4 - 7 - 5	0	0	1	0	1	0	0	1	0	1	0	0	0	0	1	1	0	0	$v_{cC1} - v_{bC1} + v_{bC2} - v_{aC2} + v_{cC3} - v_{aC3}$
С	4 - 7 - 6	0	0	1	0	1	0	0	1	0	1	0	0	0	1	0	0	0	1	$v_{cC1} - v_{bC1} + v_{bC2} - v_{aC2} + v_{bC3} - v_{cC3}$
С	4 - 7 - 7	0	0	1	0	1	0	0	1	0	1	0	0	0	1	0	1	0	0	$v_{cC1} - v_{bC1} + v_{bC2} - v_{aC2} + v_{bC3} - v_{aC3}$
С	4 - 7 - 8	0	0	1	0	1	0	0	1	0	1	0	0	1	0	0	0	0	1	$v_{cC1} - v_{bC1} + v_{bC2} - v_{aC2} + v_{aC3} - v_{cC3}$
С	4 - 7 - 9	0	0	1	0	1	0	0	1	0	1	0	0	1	0	0	0	1	0	$v_{cC1} - v_{bC1} + v_{bC2} - v_{aC2} + v_{aC3} - v_{bC3}$
С	4 - 8 - 1	0	0	1	0	1	0	1	0	0	0	0	1	0	0	1	0	0	1	$v_{cC1} - v_{bC1} + v_{aC2} - v_{cC2}$
С	4 - 8 - 2	0	0	1	0	1	0	1	0	0	0	0	1	0	1	0	0	1	0	$v_{cC1} - v_{bC1} + v_{aC2} - v_{cC2}$
С	4 - 8 - 3	0	0	1	0	1	0	1	0	0	0	0	1	1	0	0	1	0	0	$v_{cC1} - v_{bC1} + v_{aC2} - v_{cC2}$
С	4 - 8 - 4	0	0	1	0	1	0	1	0	0	0	0	1	0	0	1	0	1	0	$v_{cC1} - v_{bC1} + v_{aC2} - v_{cC2} + v_{cC3} - v_{bC3}$
С	4 - 8 - 5	0	0	1	0	1	0	1	0	0	0	0	1	0	0	1	1	0	0	$v_{cC1} - v_{bC1} + v_{aC2} - v_{cC2} + v_{cC3} - v_{aC3}$
С	4 - 8 - 6	0	0	1	0	1	0	1	0	0	0	0	1	0	1	0	0	0	1	$v_{cC1} - v_{bC1} + v_{aC2} - v_{cC2} + v_{bC3} - v_{cC3}$
С	4 - 8 - 7	0	0	1	0	1	0	1	0	0	0	0	1	0	1	0	1	0	0	$v_{cC1} - v_{bC1} + v_{aC2} - v_{cC2} + v_{bC3} - v_{aC3}$
С	4 - 8 - 8	0	0	1	0	1	0	1	0	0	0	0	1	1	0	0	0	0	1	$v_{cC1} - v_{bC1} + v_{aC2} - v_{cC2} + v_{aC3} - v_{cC3}$
С	4 - 8 - 9	0	0	1	0	1	0	1	0	0	0	0	1	1	0	0	0	1	0	$v_{cC1} - v_{bC1} + v_{aC2} - v_{cC2} + v_{aC3} - v_{bC3}$
С	4 - 9 - 1	0	0	1	0	1	0	1	0	0	0	1	0	0	0	1	0	0	1	$v_{cC1} - v_{bC1} + v_{aC2} - v_{bC2}$
С	4 - 9 - 2	0	0	1	0	1	0	1	0	0	0	1	0	0	1	0	0	1	0	$v_{cC1} - v_{bC1} + v_{aC2} - v_{bC2}$
С	4 - 9 - 3	0	0	1	0	1	0	1	0	0	0	1	0	1	0	0	1	0	0	$v_{cC1} - v_{bC1} + v_{aC2} - v_{bC2}$
С	4 - 9 - 4	0	0	1	0	1	0	1	0	0	0	1	0	0	0	1	0	1	0	$v_{cC1} - v_{bC1} + v_{aC2} - v_{bC2} + v_{cC3} - v_{bC3}$
С	4 - 9 - 5	0	0	1	0	1	0	1	0	0	0	1	0	0	0	1	1	0	0	$v_{cC1} - v_{bC1} + v_{aC2} - v_{bC2} + v_{cC3} - v_{aC3}$
С	4 - 9 - 6	0	0	1	0	1	0	1	0	0	0	1	0	0	1	0	0	0	1	$v_{cC1} - v_{bC1} + v_{aC2} - v_{bC2} + v_{bC3} - v_{cC3}$
С	4 - 9 - 7	0	0	1	0	1	0	1	0	0	0	1	0	0	1	0	1	0	0	$v_{cC1} - v_{bC1} + v_{aC2} - v_{bC2} + v_{bC3} - v_{aC3}$
С	4 - 9 - 8	0	0	1	0	1	0	1	0	0	0	1	0	1	0	0	0	0	1	$v_{cC1} - v_{bC1} + v_{aC2} - v_{bC2} + v_{aC3} - v_{cC3}$
С	4 - 9 - 9	0	0	1	0	1	0	1	0	0	0	1	0	1	0	0	0	1	0	$v_{cC1} - v_{bC1} + v_{aC2} - v_{bC2} + v_{aC3} - v_{bC3}$

Tabla 81: Estados válidos de conmutación de cada convertidor matricial 3x1

				C_1						C_2						C_3				
Fase	Est. conmut.	S_1	S_2	S_3	S_4	S_5	S_6	S_1	S_2	S_3	S_4	S_5	S_6	S_1	S_2	S_3	S_4	S_5	S_6	v_{xn}
С	5 - 1 - 1	0	0	1	1	0	0	0	0	1	0	0	1	0	0	1	0	0	1	$v_{cC1} - v_{aC1}$
\mathbf{C}	5 - 1 - 2	0	0	1	1	0	0	0	0	1	0	0	1	0	1	0	0	1	0	$v_{cC1} - v_{aC1}$
\mathbf{C}	5 - 1 - 3	0	0	1	1	0	0	0	0	1	0	0	1	1	0	0	1	0	0	$v_{cC1} - v_{aC1}$
\mathbf{C}	5 - 1 - 4	0	0	1	1	0	0	0	0	1	0	0	1	0	0	1	0	1	0	$v_{cC1} - v_{aC1} + v_{cC3} - v_{bC3}$
\mathbf{C}	5 - 1 - 5	0	0	1	1	0	0	0	0	1	0	0	1	0	0	1	1	0	0	$v_{cC1} - v_{aC1} + v_{cC3} - v_{aC3}$
\mathbf{C}	5 - 1 - 6	0	0	1	1	0	0	0	0	1	0	0	1	0	1	0	0	0	1	$v_{cC1} - v_{aC1} + v_{bC3} - v_{cC3}$
\mathbf{C}	5 - 1 - 7	0	0	1	1	0	0	0	0	1	0	0	1	0	1	0	1	0	0	$v_{cC1} - v_{aC1} + v_{bC3} - v_{aC3}$
\mathbf{C}	5 - 1 - 8	0	0	1	1	0	0	0	0	1	0	0	1	1	0	0	0	0	1	$v_{cC1} - v_{aC1} + v_{aC3} - v_{cC3}$
\mathbf{C}	5 - 1 - 9	0	0	1	1	0	0	0	0	1	0	0	1	1	0	0	0	1	0	$v_{cC1} - v_{aC1} + v_{aC3} - v_{bC3}$
\mathbf{C}	5 - 2 - 1	0	0	1	1	0	0	0	1	0	0	1	0	0	0	1	0	0	1	$v_{cC1} - v_{aC1}$
\mathbf{C}	5 - 2 - 2	0	0	1	1	0	0	0	1	0	0	1	0	0	1	0	0	1	0	$v_{cC1} - v_{aC1}$
\mathbf{C}	5 - 2 - 3	0	0	1	1	0	0	0	1	0	0	1	0	1	0	0	1	0	0	$v_{cC1} - v_{aC1}$
\mathbf{C}	5 - 2 - 4	0	0	1	1	0	0	0	1	0	0	1	0	0	0	1	0	1	0	$v_{cC1} - v_{aC1} + v_{cC3} - v_{bC3}$
\mathbf{C}	5 - 2 - 5	0	0	1	1	0	0	0	1	0	0	1	0	0	0	1	1	0	0	$v_{cC1} - v_{aC1} + v_{cC3} - v_{aC3}$
\mathbf{C}	5 - 2 - 6	0	0	1	1	0	0	0	1	0	0	1	0	0	1	0	0	0	1	$v_{cC1} - v_{aC1} + v_{bC3} - v_{cC3}$
\mathbf{C}	5 - 2 - 7	0	0	1	1	0	0	0	1	0	0	1	0	0	1	0	1	0	0	$v_{cC1} - v_{aC1} + v_{bC3} - v_{aC3}$
\mathbf{C}	5 - 2 - 8	0	0	1	1	0	0	0	1	0	0	1	0	1	0	0	0	0	1	$v_{cC1} - v_{aC1} + v_{aC3} - v_{cC3}$
\mathbf{C}	5 - 2 - 9	0	0	1	1	0	0	0	1	0	0	1	0	1	0	0	0	1	0	$v_{cC1} - v_{aC1} + v_{aC3} - v_{bC3}$
\mathbf{C}	5 - 3 - 1	0	0	1	1	0	0	1	0	0	1	0	0	0	0	1	0	0	1	$v_{cC1} - v_{aC1}$
\mathbf{C}	5 - 3 - 2	0	0	1	1	0	0	1	0	0	1	0	0	0	1	0	0	1	0	$v_{cC1} - v_{aC1}$
\mathbf{C}	5 - 3 - 3	0	0	1	1	0	0	1	0	0	1	0	0	1	0	0	1	0	0	$v_{cC1} - v_{aC1}$
\mathbf{C}	5 - 3 - 4	0	0	1	1	0	0	1	0	0	1	0	0	0	0	1	0	1	0	$v_{cC1} - v_{aC1} + v_{cC3} - v_{bC3}$
\mathbf{C}	5 - 3 - 5	0	0	1	1	0	0	1	0	0	1	0	0	0	0	1	1	0	0	$v_{cC1} - v_{aC1} + v_{cC3} - v_{aC3}$
\mathbf{C}	5 - 3 - 6	0	0	1	1	0	0	1	0	0	1	0	0	0	1	0	0	0	1	$v_{cC1} - v_{aC1} + v_{bC3} - v_{cC3}$
С	5 - 3 - 7	0	0	1	1	0	0	1	0	0	1	0	0	0	1	0	1	0	0	$v_{cC1} - v_{aC1} + v_{bC3} - v_{aC3}$
С	5 - 3 - 8	0	0	1	1	0	0	1	0	0	1	0	0	1	0	0	0	0	1	$v_{cC1} - v_{aC1} + v_{aC3} - v_{cC3}$
\mathbf{C}	5 - 3 - 9	0	0	1	1	0	0	1	0	0	1	0	0	1	0	0	0	1	0	$v_{cC1} - v_{aC1} + v_{aC3} - v_{bC3}$

Tabla 82: Estados válidos de conmutación de cada convertidor matricial 3x1

				C_1						C_2						C_3				
Fase	Est. conmut.	S_1	S_2	S_3	S_4	S_5	S_6	S_1	S_2	S_3	S_4	S_5	S_6	S_1	S_2	S_3	S_4	S_5	S_6	v_{xn}
С	5 - 4 - 1	0	0	1	1	0	0	0	0	1	0	1	0	0	0	1	0	0	1	$v_{cC1} - v_{aC1} + v_{cC2} - v_{bC2}$
\mathbf{C}	5 - 4 - 2	0	0	1	1	0	0	0	0	1	0	1	0	0	1	0	0	1	0	$v_{cC1} - v_{aC1} + v_{cC2} - v_{bC2}$
\mathbf{C}	5 - 4 - 3	0	0	1	1	0	0	0	0	1	0	1	0	1	0	0	1	0	0	$v_{cC1} - v_{aC1} + v_{cC2} - v_{bC2}$
\mathbf{C}	5 - 4 - 4	0	0	1	1	0	0	0	0	1	0	1	0	0	0	1	0	1	0	$v_{cC1} - v_{aC1} + v_{cC2} - v_{bC2} + v_{cC3} - v_{bC3}$
\mathbf{C}	5 - 4 - 5	0	0	1	1	0	0	0	0	1	0	1	0	0	0	1	1	0	0	$v_{cC1} - v_{aC1} + v_{cC2} - v_{bC2} + v_{cC3} - v_{aC3}$
\mathbf{C}	5 - 4 - 6	0	0	1	1	0	0	0	0	1	0	1	0	0	1	0	0	0	1	$v_{cC1} - v_{aC1} + v_{cC2} - v_{bC2} + v_{bC3} - v_{cC3}$
\mathbf{C}	5 - 4 - 7	0	0	1	1	0	0	0	0	1	0	1	0	0	1	0	1	0	0	$v_{cC1} - v_{aC1} + v_{cC2} - v_{bC2} + v_{bC3} - v_{aC3}$
\mathbf{C}	5 - 4 - 8	0	0	1	1	0	0	0	0	1	0	1	0	1	0	0	0	0	1	$v_{cC1} - v_{aC1} + v_{cC2} - v_{bC2} + v_{aC3} - v_{cC3}$
\mathbf{C}	5 - 4 - 9	0	0	1	1	0	0	0	0	1	0	1	0	1	0	0	0	1	0	$v_{cC1} - v_{aC1} + v_{cC2} - v_{bC2} + v_{aC3} - v_{bC3}$
\mathbf{C}	5 - 5 - 1	0	0	1	1	0	0	0	0	1	1	0	0	0	0	1	0	0	1	$v_{cC1} - v_{aC1} + v_{cC2} - v_{aC2}$
\mathbf{C}	5 - 5 - 2	0	0	1	1	0	0	0	0	1	1	0	0	0	1	0	0	1	0	$v_{cC1} - v_{aC1} + v_{cC2} - v_{aC2}$
\mathbf{C}	5 - 5 - 3	0	0	1	1	0	0	0	0	1	1	0	0	1	0	0	1	0	0	$v_{cC1} - v_{aC1} + v_{cC2} - v_{aC2}$
\mathbf{C}	5 - 5 - 4	0	0	1	1	0	0	0	0	1	1	0	0	0	0	1	0	1	0	$v_{cC1} - v_{aC1} + v_{cC2} - v_{aC2} + v_{cC3} - v_{bC3}$
\mathbf{C}	5 - 5 - 5	0	0	1	1	0	0	0	0	1	1	0	0	0	0	1	1	0	0	$v_{cC1} - v_{aC1} + v_{cC2} - v_{aC2} + v_{cC3} - v_{aC3}$
\mathbf{C}	5 - 5 - 6	0	0	1	1	0	0	0	0	1	1	0	0	0	1	0	0	0	1	$v_{cC1} - v_{aC1} + v_{cC2} - v_{aC2} + v_{bC3} - v_{cC3}$
\mathbf{C}	5 - 5 - 7	0	0	1	1	0	0	0	0	1	1	0	0	0	1	0	1	0	0	$v_{cC1} - v_{aC1} + v_{cC2} - v_{aC2} + v_{bC3} - v_{aC3}$
\mathbf{C}	5 - 5 - 8	0	0	1	1	0	0	0	0	1	1	0	0	1	0	0	0	0	1	$v_{cC1} - v_{aC1} + v_{cC2} - v_{aC2} + v_{aC3} - v_{cC3}$
\mathbf{C}	5 - 5 - 9	0	0	1	1	0	0	0	0	1	1	0	0	1	0	0	0	1	0	$v_{cC1} - v_{aC1} + v_{cC2} - v_{aC2} + v_{aC3} - v_{bC3}$
\mathbf{C}	5 - 6 - 1	0	0	1	1	0	0	0	1	0	0	0	1	0	0	1	0	0	1	$v_{cC1} - v_{aC1} + v_{bC2} - v_{cC2}$
\mathbf{C}	5 - 6 - 2	0	0	1	1	0	0	0	1	0	0	0	1	0	1	0	0	1	0	$v_{cC1} - v_{aC1} + v_{bC2} - v_{cC2}$
\mathbf{C}	5 - 6 - 3	0	0	1	1	0	0	0	1	0	0	0	1	1	0	0	1	0	0	$v_{cC1} - v_{aC1} + v_{bC2} - v_{cC2}$
\mathbf{C}	5 - 6 - 4	0	0	1	1	0	0	0	1	0	0	0	1	0	0	1	0	1	0	$v_{cC1} - v_{aC1} + v_{bC2} - v_{cC2} + v_{cC3} - v_{bC3}$
\mathbf{C}	5 - 6 - 5	0	0	1	1	0	0	0	1	0	0	0	1	0	0	1	1	0	0	$v_{cC1} - v_{aC1} + v_{bC2} - v_{cC2} + v_{cC3} - v_{aC3}$
\mathbf{C}	5 - 6 - 6	0	0	1	1	0	0	0	1	0	0	0	1	0	1	0	0	0	1	$v_{cC1} - v_{aC1} + v_{bC2} - v_{cC2} + v_{bC3} - v_{cC3}$
\mathbf{C}	5 - 6 - 7	0	0	1	1	0	0	0	1	0	0	0	1	0	1	0	1	0	0	$v_{cC1} - v_{aC1} + v_{bC2} - v_{cC2} + v_{bC3} - v_{aC3}$
\mathbf{C}	5 - 6 - 8	0	0	1	1	0	0	0	1	0	0	0	1	1	0	0	0	0	1	$v_{cC1} - v_{aC1} + v_{bC2} - v_{cC2} + v_{aC3} - v_{cC3}$
\mathbf{C}	5 - 6 - 9	0	0	1	1	0	0	0	1	0	0	0	1	1	0	0	0	1	0	$v_{cC1} - v_{aC1} + v_{bC2} - v_{cC2} + v_{aC2} - v_{bC2}$

Tabla 83: Estados válidos de conmutación de cada convertidor matricial $3\mathrm{x}1$

				C_1						C_2				l		C_3				
Fase	Est. conmut.	S_1	S_2	S_3	S_4	S_5	S_6	S_1	S_2	S_3	S_4	S_5	S_6	S_1	S_2	S_3	S_4	S_5	S_6	v_{xn}
С	5 - 7 - 1	0	0	1	1	0	0	0	1	0	1	0	0	0	0	1	0	0	1	$v_{cC1} - v_{aC1} + v_{bC2} - v_{aC2}$
\mathbf{C}	5 - 7 - 2	0	0	1	1	0	0	0	1	0	1	0	0	0	1	0	0	1	0	$v_{cC1} - v_{aC1} + v_{bC2} - v_{aC2}$
\mathbf{C}	5 - 7 - 3	0	0	1	1	0	0	0	1	0	1	0	0	1	0	0	1	0	0	$v_{cC1} - v_{aC1} + v_{bC2} - v_{aC2}$
\mathbf{C}	5 - 7 - 4	0	0	1	1	0	0	0	1	0	1	0	0	0	0	1	0	1	0	$v_{cC1} - v_{aC1} + v_{bC2} - v_{aC2} + v_{cC3} - v_{bC3}$
\mathbf{C}	5 - 7 - 5	0	0	1	1	0	0	0	1	0	1	0	0	0	0	1	1	0	0	$v_{cC1} - v_{aC1} + v_{bC2} - v_{aC2} + v_{cC3} - v_{aC3}$
\mathbf{C}	5 - 7 - 6	0	0	1	1	0	0	0	1	0	1	0	0	0	1	0	0	0	1	$v_{cC1} - v_{aC1} + v_{bC2} - v_{aC2} + v_{bC3} - v_{cC3}$
\mathbf{C}	5 - 7 - 7	0	0	1	1	0	0	0	1	0	1	0	0	0	1	0	1	0	0	$v_{cC1} - v_{aC1} + v_{bC2} - v_{aC2} + v_{bC3} - v_{aC3}$
\mathbf{C}	5 - 7 - 8	0	0	1	1	0	0	0	1	0	1	0	0	1	0	0	0	0	1	$v_{cC1} - v_{aC1} + v_{bC2} - v_{aC2} + v_{aC3} - v_{cC3}$
\mathbf{C}	5 - 7 - 9	0	0	1	1	0	0	0	1	0	1	0	0	1	0	0	0	1	0	$v_{cC1} - v_{aC1} + v_{bC2} - v_{aC2} + v_{aC3} - v_{bC3}$
\mathbf{C}	5 - 8 - 1	0	0	1	1	0	0	1	0	0	0	0	1	0	0	1	0	0	1	$v_{cC1} - v_{aC1} + v_{aC2} - v_{cC2}$
\mathbf{C}	5 - 8 - 2	0	0	1	1	0	0	1	0	0	0	0	1	0	1	0	0	1	0	$v_{cC1} - v_{aC1} + v_{aC2} - v_{cC2}$
\mathbf{C}	5 - 8 - 3	0	0	1	1	0	0	1	0	0	0	0	1	1	0	0	1	0	0	$v_{cC1} - v_{aC1} + v_{aC2} - v_{cC2}$
\mathbf{C}	5 - 8 - 4	0	0	1	1	0	0	1	0	0	0	0	1	0	0	1	0	1	0	$v_{cC1} - v_{aC1} + v_{aC2} - v_{cC2} + v_{cC3} - v_{bC3}$
\mathbf{C}	5 - 8 - 5	0	0	1	1	0	0	1	0	0	0	0	1	0	0	1	1	0	0	$v_{cC1} - v_{aC1} + v_{aC2} - v_{cC2} + v_{cC3} - v_{aC3}$
\mathbf{C}	5 - 8 - 6	0	0	1	1	0	0	1	0	0	0	0	1	0	1	0	0	0	1	$v_{cC1} - v_{aC1} + v_{aC2} - v_{cC2} + v_{bC3} - v_{cC3}$
\mathbf{C}	5 - 8 - 7	0	0	1	1	0	0	1	0	0	0	0	1	0	1	0	1	0	0	$v_{cC1} - v_{aC1} + v_{aC2} - v_{cC2} + v_{bC3} - v_{aC3}$
\mathbf{C}	5 - 8 - 8	0	0	1	1	0	0	1	0	0	0	0	1	1	0	0	0	0	1	$v_{cC1} - v_{aC1} + v_{aC2} - v_{cC2} + v_{aC3} - v_{cC3}$
\mathbf{C}	5 - 8 - 9	0	0	1	1	0	0	1	0	0	0	0	1	1	0	0	0	1	0	$v_{cC1} - v_{aC1} + v_{aC2} - v_{cC2} + v_{aC3} - v_{bC3}$
\mathbf{C}	5 - 9 - 1	0	0	1	1	0	0	1	0	0	0	1	0	0	0	1	0	0	1	$v_{cC1} - v_{aC1} + v_{aC2} - v_{bC2}$
\mathbf{C}	5 - 9 - 2	0	0	1	1	0	0	1	0	0	0	1	0	0	1	0	0	1	0	$v_{cC1} - v_{aC1} + v_{aC2} - v_{bC2}$
\mathbf{C}	5 - 9 - 3	0	0	1	1	0	0	1	0	0	0	1	0	1	0	0	1	0	0	$v_{cC1} - v_{aC1} + v_{aC2} - v_{bC2}$
\mathbf{C}	5 - 9 - 4	0	0	1	1	0	0	1	0	0	0	1	0	0	0	1	0	1	0	$v_{cC1} - v_{aC1} + v_{aC2} - v_{bC2} + v_{cC3} - v_{bC3}$
\mathbf{C}	5 - 9 - 5	0	0	1	1	0	0	1	0	0	0	1	0	0	0	1	1	0	0	$v_{cC1} - v_{aC1} + v_{aC2} - v_{bC2} + v_{cC3} - v_{aC3}$
\mathbf{C}	5 - 9 - 6	0	0	1	1	0	0	1	0	0	0	1	0	0	1	0	0	0	1	$v_{cC1} - v_{aC1} + v_{aC2} - v_{bC2} + v_{bC3} - v_{cC3}$
\mathbf{C}	5 - 9 - 7	0	0	1	1	0	0	1	0	0	0	1	0	0	1	0	1	0	0	$v_{cC1} - v_{aC1} + v_{aC2} - v_{bC2} + v_{bC3} - v_{aC3}$
\mathbf{C}	5 - 9 - 8	0	0	1	1	0	0	1	0	0	0	1	0	1	0	0	0	0	1	$v_{cC1} - v_{aC1} + v_{aC2} - v_{bC2} + v_{aC3} - v_{cC3}$
\mathbf{C}	5 - 9 - 9	0	0	1	1	0	0	1	0	0	0	1	0	1	0	0	0	1	0	$v_{cC1} - v_{aC1} + v_{aC2} - v_{bC2} + v_{aC3} - v_{bC3}$

Tabla 84: Estados válidos de conmutación de cada convertidor matricial 3x1

				C_1						C_2						C_3				
Fase	Est. conmut.	S_1	S_2	S_3	S_4	S_5	S_6	S_1	S_2	S_3	S_4	S_5	S_6	S_1	S_2	S_3	S_4	S_5	S_6	v_{xn}
\mathbf{C}	6 - 1 - 1	0	1	0	0	0	1	0	0	1	0	0	1	0	0	1	0	0	1	$v_{bC1} - v_{cC1}$
\mathbf{C}	6 - 1 - 2	0	1	0	0	0	1	0	0	1	0	0	1	0	1	0	0	1	0	$v_{bC1} - v_{cC1}$
\mathbf{C}	6 - 1 - 3	0	1	0	0	0	1	0	0	1	0	0	1	1	0	0	1	0	0	$v_{bC1} - v_{cC1}$
\mathbf{C}	6 - 1 - 4	0	1	0	0	0	1	0	0	1	0	0	1	0	0	1	0	1	0	$v_{bC1} - v_{cC1} + v_{cC3} - v_{bC3}$
\mathbf{C}	6 - 1 - 5	0	1	0	0	0	1	0	0	1	0	0	1	0	0	1	1	0	0	$v_{bC1} - v_{cC1} + v_{cC3} - v_{aC3}$
\mathbf{C}	6 - 1 - 6	0	1	0	0	0	1	0	0	1	0	0	1	0	1	0	0	0	1	$v_{bC1} - v_{cC1} + v_{bC3} - v_{cC3}$
\mathbf{C}	6 - 1 - 7	0	1	0	0	0	1	0	0	1	0	0	1	0	1	0	1	0	0	$v_{bC1} - v_{cC1} + v_{bC3} - v_{aC3}$
\mathbf{C}	6 - 1 - 8	0	1	0	0	0	1	0	0	1	0	0	1	1	0	0	0	0	1	$v_{bC1} - v_{cC1} + v_{aC3} - v_{cC3}$
\mathbf{C}	6 - 1 - 9	0	1	0	0	0	1	0	0	1	0	0	1	1	0	0	0	1	0	$v_{bC1} - v_{cC1} + v_{aC3} - v_{bC3}$
\mathbf{C}	6 - 2 - 1	0	1	0	0	0	1	0	1	0	0	1	0	0	0	1	0	0	1	$v_{bC1} - v_{cC1}$
\mathbf{C}	6 - 2 - 2	0	1	0	0	0	1	0	1	0	0	1	0	0	1	0	0	1	0	$v_{bC1} - v_{cC1}$
\mathbf{C}	6 - 2 - 3	0	1	0	0	0	1	0	1	0	0	1	0	1	0	0	1	0	0	$v_{bC1} - v_{cC1}$
\mathbf{C}	6 - 2 - 4	0	1	0	0	0	1	0	1	0	0	1	0	0	0	1	0	1	0	$v_{bC1} - v_{cC1} + v_{cC3} - v_{bC3}$
\mathbf{C}	6 - 2 - 5	0	1	0	0	0	1	0	1	0	0	1	0	0	0	1	1	0	0	$v_{bC1} - v_{cC1} + v_{cC3} - v_{aC3}$
\mathbf{C}	6 - 2 - 6	0	1	0	0	0	1	0	1	0	0	1	0	0	1	0	0	0	1	$v_{bC1} - v_{cC1} + v_{bC3} - v_{cC3}$
\mathbf{C}	6 - 2 - 7	0	1	0	0	0	1	0	1	0	0	1	0	0	1	0	1	0	0	$v_{bC1} - v_{cC1} + v_{bC3} - v_{aC3}$
\mathbf{C}	6 - 2 - 8	0	1	0	0	0	1	0	1	0	0	1	0	1	0	0	0	0	1	$v_{bC1} - v_{cC1} + v_{aC3} - v_{cC3}$
\mathbf{C}	6 - 2 - 9	0	1	0	0	0	1	0	1	0	0	1	0	1	0	0	0	1	0	$v_{bC1} - v_{cC1} + v_{aC3} - v_{bC3}$
\mathbf{C}	6 - 3 - 1	0	1	0	0	0	1	1	0	0	1	0	0	0	0	1	0	0	1	$v_{bC1} - v_{cC1}$
\mathbf{C}	6 - 3 - 2	0	1	0	0	0	1	1	0	0	1	0	0	0	1	0	0	1	0	$v_{bC1} - v_{cC1}$
\mathbf{C}	6 - 3 - 3	0	1	0	0	0	1	1	0	0	1	0	0	1	0	0	1	0	0	$v_{bC1} - v_{cC1}$
\mathbf{C}	6 - 3 - 4	0	1	0	0	0	1	1	0	0	1	0	0	0	0	1	0	1	0	$v_{bC1} - v_{cC1} + v_{cC3} - v_{bC3}$
\mathbf{C}	6 - 3 - 5	0	1	0	0	0	1	1	0	0	1	0	0	0	0	1	1	0	0	$v_{bC1} - v_{cC1} + v_{cC3} - v_{aC3}$
\mathbf{C}	6 - 3 - 6	0	1	0	0	0	1	1	0	0	1	0	0	0	1	0	0	0	1	$v_{bC1} - v_{cC1} + v_{bC3} - v_{cC3}$
С	6 - 3 - 7	0	1	0	0	0	1	1	0	0	1	0	0	0	1	0	1	0	0	$v_{bC1} - v_{cC1} + v_{bC3} - v_{aC3}$
С	6 - 3 - 8	0	1	0	0	0	1	1	0	0	1	0	0	1	0	0	0	0	1	$v_{bC1} - v_{cC1} + v_{aC3} - v_{cC3}$
С	6 - 3 - 9	0	1	0	0	0	1	1	0	0	1	0	0	1	0	0	0	1	0	$v_{bC1} - v_{cC1} + v_{aC3} - v_{bC3}$

Tabla 85: Estados válidos de conmutación de cada convertidor matricial 3x1

				C_1						C_2						C_3				
Fase	Est. conmut.	S_1	S_2	S_3	S_4	S_5	S_6	S_1	S_2	S_3	S_4	S_5	S_6	S_1	S_2	S_3	S_4	S_5	S_6	v_{xn}
С	6 - 4 - 1	0	1	0	0	0	1	0	0	1	0	1	0	0	0	1	0	0	1	$v_{bC1} - v_{cC1} + v_{cC2} - v_{bC2}$
\mathbf{C}	6 - 4 - 2	0	1	0	0	0	1	0	0	1	0	1	0	0	1	0	0	1	0	$v_{bC1} - v_{cC1} + v_{cC2} - v_{bC2}$
\mathbf{C}	6 - 4 - 3	0	1	0	0	0	1	0	0	1	0	1	0	1	0	0	1	0	0	$v_{bC1} - v_{cC1} + v_{cC2} - v_{bC2}$
\mathbf{C}	6 - 4 - 4	0	1	0	0	0	1	0	0	1	0	1	0	0	0	1	0	1	0	$v_{bC1} - v_{cC1} + v_{cC2} - v_{bC2} + v_{cC3} - v_{bC3}$
\mathbf{C}	6 - 4 - 5	0	1	0	0	0	1	0	0	1	0	1	0	0	0	1	1	0	0	$v_{bC1} - v_{cC1} + v_{cC2} - v_{bC2} + v_{cC3} - v_{aC3}$
\mathbf{C}	6 - 4 - 6	0	1	0	0	0	1	0	0	1	0	1	0	0	1	0	0	0	1	$v_{bC1} - v_{cC1} + v_{cC2} - v_{bC2} + v_{bC3} - v_{cC3}$
\mathbf{C}	6 - 4 - 7	0	1	0	0	0	1	0	0	1	0	1	0	0	1	0	1	0	0	$v_{bC1} - v_{cC1} + v_{cC2} - v_{bC2} + v_{bC3} - v_{aC3}$
\mathbf{C}	6 - 4 - 8	0	1	0	0	0	1	0	0	1	0	1	0	1	0	0	0	0	1	$v_{bC1} - v_{cC1} + v_{cC2} - v_{bC2} + v_{aC3} - v_{cC3}$
\mathbf{C}	6 - 4 - 9	0	1	0	0	0	1	0	0	1	0	1	0	1	0	0	0	1	0	$v_{bC1} - v_{cC1} + v_{cC2} - v_{bC2} + v_{aC3} - v_{bC3}$
\mathbf{C}	6 - 5 - 1	0	1	0	0	0	1	0	0	1	1	0	0	0	0	1	0	0	1	$v_{bC1} - v_{cC1} + v_{cC2} - v_{aC2}$
\mathbf{C}	6 - 5 - 2	0	1	0	0	0	1	0	0	1	1	0	0	0	1	0	0	1	0	$v_{bC1} - v_{cC1} + v_{cC2} - v_{aC2}$
\mathbf{C}	6 - 5 - 3	0	1	0	0	0	1	0	0	1	1	0	0	1	0	0	1	0	0	$v_{bC1} - v_{cC1} + v_{cC2} - v_{aC2}$
\mathbf{C}	6 - 5 - 4	0	1	0	0	0	1	0	0	1	1	0	0	0	0	1	0	1	0	$v_{bC1} - v_{cC1} + v_{cC2} - v_{aC2} + v_{cC3} - v_{bC3}$
\mathbf{C}	6 - 5 - 5	0	1	0	0	0	1	0	0	1	1	0	0	0	0	1	1	0	0	$v_{bC1} - v_{cC1} + v_{cC2} - v_{aC2} + v_{cC3} - v_{aC3}$
\mathbf{C}	6 - 5 - 6	0	1	0	0	0	1	0	0	1	1	0	0	0	1	0	0	0	1	$v_{bC1} - v_{cC1} + v_{cC2} - v_{aC2} + v_{bC3} - v_{cC3}$
\mathbf{C}	6 - 5 - 7	0	1	0	0	0	1	0	0	1	1	0	0	0	1	0	1	0	0	$v_{bC1} - v_{cC1} + v_{cC2} - v_{aC2} + v_{bC3} - v_{aC3}$
\mathbf{C}	6 - 5 - 8	0	1	0	0	0	1	0	0	1	1	0	0	1	0	0	0	0	1	$v_{bC1} - v_{cC1} + v_{cC2} - v_{aC2} + v_{aC3} - v_{cC3}$
\mathbf{C}	6 - 5 - 9	0	1	0	0	0	1	0	0	1	1	0	0	1	0	0	0	1	0	$v_{bC1} - v_{cC1} + v_{cC2} - v_{aC2} + v_{aC3} - v_{bC3}$
\mathbf{C}	6 - 6 - 1	0	1	0	0	0	1	0	1	0	0	0	1	0	0	1	0	0	1	$v_{bC1} - v_{cC1} + v_{bC2} - v_{cC2}$
\mathbf{C}	6 - 6 - 2	0	1	0	0	0	1	0	1	0	0	0	1	0	1	0	0	1	0	$v_{bC1} - v_{cC1} + v_{bC2} - v_{cC2}$
\mathbf{C}	6 - 6 - 3	0	1	0	0	0	1	0	1	0	0	0	1	1	0	0	1	0	0	$v_{bC1} - v_{cC1} + v_{bC2} - v_{cC2}$
\mathbf{C}	6 - 6 - 4	0	1	0	0	0	1	0	1	0	0	0	1	0	0	1	0	1	0	$v_{bC1} - v_{cC1} + v_{bC2} - v_{cC2} + v_{cC3} - v_{bC3}$
\mathbf{C}	6 - 6 - 5	0	1	0	0	0	1	0	1	0	0	0	1	0	0	1	1	0	0	$v_{bC1} - v_{cC1} + v_{bC2} - v_{cC2} + v_{cC3} - v_{aC3}$
\mathbf{C}	6 - 6 - 6	0	1	0	0	0	1	0	1	0	0	0	1	0	1	0	0	0	1	$v_{bC1} - v_{cC1} + v_{bC2} - v_{cC2} + v_{bC3} - v_{cC3}$
\mathbf{C}	6 - 6 - 7	0	1	0	0	0	1	0	1	0	0	0	1	0	1	0	1	0	0	$v_{bC1} - v_{cC1} + v_{bC2} - v_{cC2} + v_{bC3} - v_{aC3}$
\mathbf{C}	6 - 6 - 8	0	1	0	0	0	1	0	1	0	0	0	1	1	0	0	0	0	1	$v_{bC1} - v_{cC1} + v_{bC2} - v_{cC2} + v_{aC3} - v_{cC3}$
С	6 - 6 - 9	0	1	0	0	0	1	0	1	0	0	0	1	1	0	0	0	1	0	$v_{bC1} - v_{cC1} + v_{bC2} - v_{cC2} + v_{aC2} - v_{bC2}$

Tabla 86: Estados válidos de conmutación de cada convertidor matricial 3x1

				C_1						C_2						C_3				
Fase	Est. conmut.	S_1	S_2	S_3	S_4	S_5	S_6	S_1	S_2	S_3	S_4	S_5	S_6	S_1	S_2	S_3	S_4	S_5	S_6	v_{xn}
С	6 - 7 - 1	0	1	0	0	0	1	0	1	0	1	0	0	0	0	1	0	0	1	$v_{bC1} - v_{cC1} + v_{bC2} - v_{aC2}$
\mathbf{C}	6 - 7 - 2	0	1	0	0	0	1	0	1	0	1	0	0	0	1	0	0	1	0	$v_{bC1} - v_{cC1} + v_{bC2} - v_{aC2}$
\mathbf{C}	6 - 7 - 3	0	1	0	0	0	1	0	1	0	1	0	0	1	0	0	1	0	0	$v_{bC1} - v_{cC1} + v_{bC2} - v_{aC2}$
\mathbf{C}	6 - 7 - 4	0	1	0	0	0	1	0	1	0	1	0	0	0	0	1	0	1	0	$v_{bC1} - v_{cC1} + v_{bC2} - v_{aC2} + v_{cC3} - v_{bC3}$
\mathbf{C}	6 - 7 - 5	0	1	0	0	0	1	0	1	0	1	0	0	0	0	1	1	0	0	$v_{bC1} - v_{cC1} + v_{bC2} - v_{aC2} + v_{cC3} - v_{aC3}$
\mathbf{C}	6 - 7 - 6	0	1	0	0	0	1	0	1	0	1	0	0	0	1	0	0	0	1	$v_{bC1} - v_{cC1} + v_{bC2} - v_{aC2} + v_{bC3} - v_{cC3}$
\mathbf{C}	6 - 7 - 7	0	1	0	0	0	1	0	1	0	1	0	0	0	1	0	1	0	0	$v_{bC1} - v_{cC1} + v_{bC2} - v_{aC2} + v_{bC3} - v_{aC3}$
\mathbf{C}	6 - 7 - 8	0	1	0	0	0	1	0	1	0	1	0	0	1	0	0	0	0	1	$v_{bC1} - v_{cC1} + v_{bC2} - v_{aC2} + v_{aC3} - v_{cC3}$
\mathbf{C}	6 - 7 - 9	0	1	0	0	0	1	0	1	0	1	0	0	1	0	0	0	1	0	$v_{bC1} - v_{cC1} + v_{bC2} - v_{aC2} + v_{aC3} - v_{bC3}$
\mathbf{C}	6 - 8 - 1	0	1	0	0	0	1	1	0	0	0	0	1	0	0	1	0	0	1	$v_{bC1} - v_{cC1} + v_{aC2} - v_{cC2}$
\mathbf{C}	6 - 8 - 2	0	1	0	0	0	1	1	0	0	0	0	1	0	1	0	0	1	0	$v_{bC1} - v_{cC1} + v_{aC2} - v_{cC2}$
\mathbf{C}	6 - 8 - 3	0	1	0	0	0	1	1	0	0	0	0	1	1	0	0	1	0	0	$v_{bC1} - v_{cC1} + v_{aC2} - v_{cC2}$
\mathbf{C}	6 - 8 - 4	0	1	0	0	0	1	1	0	0	0	0	1	0	0	1	0	1	0	$v_{bC1} - v_{cC1} + v_{aC2} - v_{cC2} + v_{cC3} - v_{bC3}$
\mathbf{C}	6 - 8 - 5	0	1	0	0	0	1	1	0	0	0	0	1	0	0	1	1	0	0	$v_{bC1} - v_{cC1} + v_{aC2} - v_{cC2} + v_{cC3} - v_{aC3}$
\mathbf{C}	6 - 8 - 6	0	1	0	0	0	1	1	0	0	0	0	1	0	1	0	0	0	1	$v_{bC1} - v_{cC1} + v_{aC2} - v_{cC2} + v_{bC3} - v_{cC3}$
\mathbf{C}	6 - 8 - 7	0	1	0	0	0	1	1	0	0	0	0	1	0	1	0	1	0	0	$v_{bC1} - v_{cC1} + v_{aC2} - v_{cC2} + v_{bC3} - v_{aC3}$
\mathbf{C}	6 - 8 - 8	0	1	0	0	0	1	1	0	0	0	0	1	1	0	0	0	0	1	$v_{bC1} - v_{cC1} + v_{aC2} - v_{cC2} + v_{aC3} - v_{cC3}$
\mathbf{C}	6 - 8 - 9	0	1	0	0	0	1	1	0	0	0	0	1	1	0	0	0	1	0	$v_{bC1} - v_{cC1} + v_{aC2} - v_{cC2} + v_{aC3} - v_{bC3}$
\mathbf{C}	6 - 9 - 1	0	1	0	0	0	1	1	0	0	0	1	0	0	0	1	0	0	1	$v_{bC1} - v_{cC1} + v_{aC2} - v_{bC2}$
\mathbf{C}	6 - 9 - 2	0	1	0	0	0	1	1	0	0	0	1	0	0	1	0	0	1	0	$v_{bC1} - v_{cC1} + v_{aC2} - v_{bC2}$
С	6 - 9 - 3	0	1	0	0	0	1	1	0	0	0	1	0	1	0	0	1	0	0	$v_{bC1} - v_{cC1} + v_{aC2} - v_{bC2}$
С	6 - 9 - 4	0	1	0	0	0	1	1	0	0	0	1	0	0	0	1	0	1	0	$v_{bC1} - v_{cC1} + v_{aC2} - v_{bC2} + v_{cC3} - v_{bC3}$
\mathbf{C}	6 - 9 - 5	0	1	0	0	0	1	1	0	0	0	1	0	0	0	1	1	0	0	$v_{bC1} - v_{cC1} + v_{aC2} - v_{bC2} + v_{cC3} - v_{aC3}$
\mathbf{C}	6 - 9 - 6	0	1	0	0	0	1	1	0	0	0	1	0	0	1	0	0	0	1	$v_{bC1} - v_{cC1} + v_{aC2} - v_{bC2} + v_{bC3} - v_{cC3}$
\mathbf{C}	6 - 9 - 7	0	1	0	0	0	1	1	0	0	0	1	0	0	1	0	1	0	0	$v_{bC1} - v_{cC1} + v_{aC2} - v_{bC2} + v_{bC3} - v_{aC3}$
\mathbf{C}	6 - 9 - 8	0	1	0	0	0	1	1	0	0	0	1	0	1	0	0	0	0	1	$v_{bC1} - v_{cC1} + v_{aC2} - v_{bC2} + v_{aC3} - v_{cC3}$
\mathbf{C}	6 - 9 - 9	0	1	0	0	0	1	1	0	0	0	1	0	1	0	0	0	1	0	$v_{bC1} - v_{cC1} + v_{aC2} - v_{bC2} + v_{aC3} - v_{bC3}$

Tabla 87: Estados válidos de conmutación de cada convertidor matricial 3x1

				C_1						C_2						C_3				
Fase	Est. conmut.	S_1	S_2	S_3	S_4	S_5	S_6	S_1	S_2	S_3	S_4	S_5	S_6	S_1	S_2	S_3	S_4	S_5	S_6	v_{xn}
\mathbf{C}	7 - 1 - 1	1	0	0	1	0	0	0	0	1	0	0	1	0	0	1	0	0	1	$v_{bC1} - v_{aC1}$
\mathbf{C}	7 - 1 - 2	1	0	0	1	0	0	0	0	1	0	0	1	0	1	0	0	1	0	$v_{bC1} - v_{aC1}$
\mathbf{C}	7 - 1 - 3	1	0	0	1	0	0	0	0	1	0	0	1	1	0	0	1	0	0	$v_{bC1} - v_{aC1}$
\mathbf{C}	7 - 1 - 4	1	0	0	1	0	0	0	0	1	0	0	1	0	0	1	0	1	0	$v_{bC1} - v_{aC1} + v_{cC3} - v_{bC3}$
\mathbf{C}	7 - 1 - 5	1	0	0	1	0	0	0	0	1	0	0	1	0	0	1	1	0	0	$v_{bC1} - v_{aC1} + v_{cC3} - v_{aC3}$
\mathbf{C}	7 - 1 - 6	1	0	0	1	0	0	0	0	1	0	0	1	0	1	0	0	0	1	$v_{bC1} - v_{aC1} + v_{bC3} - v_{cC3}$
\mathbf{C}	7 - 1 - 7	1	0	0	1	0	0	0	0	1	0	0	1	0	1	0	1	0	0	$v_{bC1} - v_{aC1} + v_{bC3} - v_{aC3}$
\mathbf{C}	7 - 1 - 8	1	0	0	1	0	0	0	0	1	0	0	1	1	0	0	0	0	1	$v_{bC1} - v_{aC1} + v_{aC3} - v_{cC3}$
\mathbf{C}	7 - 1 - 9	1	0	0	1	0	0	0	0	1	0	0	1	1	0	0	0	1	0	$v_{bC1} - v_{aC1} + v_{aC3} - v_{bC3}$
\mathbf{C}	7 - 2 - 1	1	0	0	1	0	0	0	1	0	0	1	0	0	0	1	0	0	1	$v_{bC1} - v_{aC1}$
\mathbf{C}	7 - 2 - 2	1	0	0	1	0	0	0	1	0	0	1	0	0	1	0	0	1	0	$v_{bC1} - v_{aC1}$
\mathbf{C}	7 - 2 - 3	1	0	0	1	0	0	0	1	0	0	1	0	1	0	0	1	0	0	$v_{bC1} - v_{aC1}$
\mathbf{C}	7 - 2 - 4	1	0	0	1	0	0	0	1	0	0	1	0	0	0	1	0	1	0	$v_{bC1} - v_{aC1} + v_{cC3} - v_{bC3}$
\mathbf{C}	7 - 2 - 5	1	0	0	1	0	0	0	1	0	0	1	0	0	0	1	1	0	0	$v_{bC1} - v_{aC1} + v_{cC3} - v_{aC3}$
\mathbf{C}	7 - 2 - 6	1	0	0	1	0	0	0	1	0	0	1	0	0	1	0	0	0	1	$v_{bC1} - v_{aC1} + v_{bC3} - v_{cC3}$
\mathbf{C}	7 - 2 - 7	1	0	0	1	0	0	0	1	0	0	1	0	0	1	0	1	0	0	$v_{bC1} - v_{aC1} + v_{bC3} - v_{aC3}$
\mathbf{C}	7 - 2 - 8	1	0	0	1	0	0	0	1	0	0	1	0	1	0	0	0	0	1	$v_{bC1} - v_{aC1} + v_{aC3} - v_{cC3}$
\mathbf{C}	7 - 2 - 9	1	0	0	1	0	0	0	1	0	0	1	0	1	0	0	0	1	0	$v_{bC1} - v_{aC1} + v_{aC3} - v_{bC3}$
\mathbf{C}	7 - 3 - 1	1	0	0	1	0	0	1	0	0	1	0	0	0	0	1	0	0	1	$v_{bC1} - v_{aC1}$
\mathbf{C}	7 - 3 - 2	1	0	0	1	0	0	1	0	0	1	0	0	0	1	0	0	1	0	$v_{bC1} - v_{aC1}$
\mathbf{C}	7 - 3 - 3	1	0	0	1	0	0	1	0	0	1	0	0	1	0	0	1	0	0	$v_{bC1} - v_{aC1}$
\mathbf{C}	7 - 3 - 4	1	0	0	1	0	0	1	0	0	1	0	0	0	0	1	0	1	0	$v_{bC1} - v_{aC1} + v_{cC3} - v_{bC3}$
\mathbf{C}	7 - 3 - 5	1	0	0	1	0	0	1	0	0	1	0	0	0	0	1	1	0	0	$v_{bC1} - v_{aC1} + v_{cC3} - v_{aC3}$
\mathbf{C}	7 - 3 - 6	1	0	0	1	0	0	1	0	0	1	0	0	0	1	0	0	0	1	$v_{bC1} - v_{aC1} + v_{bC3} - v_{cC3}$
\mathbf{C}	7 - 3 - 7	1	0	0	1	0	0	1	0	0	1	0	0	0	1	0	1	0	0	$v_{bC1} - v_{aC1} + v_{bC3} - v_{aC3}$
\mathbf{C}	7 - 3 - 8	1	0	0	1	0	0	1	0	0	1	0	0	1	0	0	0	0	1	$v_{bC1} - v_{aC1} + v_{aC3} - v_{cC3}$
\mathbf{C}	7 - 3 - 9	1	0	0	1	0	0	1	0	0	1	0	0	1	0	0	0	1	0	$v_{bC1} - v_{aC1} + v_{aC3} - v_{bC3}$

Tabla 88: Estados válidos de conmutación de cada convertidor matricial 3x1

				C_1						C_2						C_3				
Fase	Est. conmut.	S_1	S_2	S_3	S_4	S_5	S_6	S_1	S_2	S_3	S_4	S_5	S_6	S_1	S_2	S_3	S_4	S_5	S_6	v_{xn}
С	7 - 4 - 1	1	0	0	1	0	0	0	0	1	0	1	0	0	0	1	0	0	1	$v_{bC1} - v_{aC1} + v_{cC2} - v_{bC2}$
C	7 - 4 - 2	1	0	0	1	0	0	0	0	1	0	1	0	0	1	0	0	1	0	$v_{bC1} - v_{aC1} + v_{cC2} - v_{bC2}$
C	7 - 4 - 3	1	0	0	1	0	0	0	0	1	0	1	0	1	0	0	1	0	0	$v_{bC1} - v_{aC1} + v_{cC2} - v_{bC2}$
C	7 - 4 - 4	1	0	0	1	0	0	0	0	1	0	1	0	0	0	1	0	1	0	$v_{bC1} - v_{aC1} + v_{cC2} - v_{bC2} + v_{cC3} - v_{bC3}$
C	7 - 4 - 5	1	0	0	1	0	0	0	0	1	0	1	0	0	0	1	1	0	0	$v_{bC1} - v_{aC1} + v_{cC2} - v_{bC2} + v_{cC3} - v_{aC3}$
C	7 - 4 - 6	1	0	0	1	0	0	0	0	1	0	1	0	0	1	0	0	0	1	$v_{bC1} - v_{aC1} + v_{cC2} - v_{bC2} + v_{bC3} - v_{cC3}$
C	7 - 4 - 7	1	0	0	1	0	0	0	0	1	0	1	0	0	1	0	1	0	0	$v_{bC1} - v_{aC1} + v_{cC2} - v_{bC2} + v_{bC3} - v_{aC3}$
C	7 - 4 - 8	1	0	0	1	0	0	0	0	1	0	1	0	1	0	0	0	0	1	$v_{bC1} - v_{aC1} + v_{cC2} - v_{bC2} + v_{aC3} - v_{cC3}$
C	7 - 4 - 9	1	0	0	1	0	0	0	0	1	0	1	0	1	0	0	0	1	0	$v_{bC1} - v_{aC1} + v_{cC2} - v_{bC2} + v_{aC3} - v_{bC3}$
C	7 - 5 - 1	1	0	0	1	0	0	0	0	1	1	0	0	0	0	1	0	0	1	$v_{bC1} - v_{aC1} + v_{cC2} - v_{aC2}$
C	7 - 5 - 2	1	0	0	1	0	0	0	0	1	1	0	0	0	1	0	0	1	0	$v_{bC1} - v_{aC1} + v_{cC2} - v_{aC2}$
C	7 - 5 - 3	1	0	0	1	0	0	0	0	1	1	0	0	1	0	0	1	0	0	$v_{bC1} - v_{aC1} + v_{cC2} - v_{aC2} C$
7 - 5 - 4	1	0	0	1	0	0	0	0	1	1	0	0	0	0	1	0	1	0	$v_{bC1} - v_{aC1} + v_{cC2} - v_{aC2} + v_{cC3} - v_{bC3}$	
C	7 - 5 - 5	1	0	0	1	0	0	0	0	1	1	0	0	0	0	1	1	0	0	$v_{bC1} - v_{aC1} + v_{cC2} - v_{aC2} + v_{cC3} - v_{aC3}$
C	7 - 5 - 6	1	0	0	1	0	0	0	0	1	1	0	0	0	1	0	0	0	1	$v_{bC1} - v_{aC1} + v_{cC2} - v_{aC2} + v_{bC3} - v_{cC3}$
C	7 - 5 - 7	1	0	0	1	0	0	0	0	1	1	0	0	0	1	0	1	0	0	$v_{bC1} - v_{aC1} + v_{cC2} - v_{aC2} + v_{bC3} - v_{aC3}$
C	7 - 5 - 8	1	0	0	1	0	0	0	0	1	1	0	0	1	0	0	0	0	1	$v_{bC1} - v_{aC1} + v_{cC2} - v_{aC2} + v_{aC3} - v_{cC3}$
C	7 - 5 - 9	1	0	0	1	0	0	0	0	1	1	0	0	1	0	0	0	1	0	$v_{bC1} - v_{aC1} + v_{cC2} - v_{aC2} + v_{aC3} - v_{bC3}$
C	7 - 6 - 1	1	0	0	1	0	0	0	1	0	0	0	1	0	0	1	0	0	1	$v_{bC1} - v_{aC1} + v_{bC2} - v_{cC2}$
C	7 - 6 - 2	1	0	0	1	0	0	0	1	0	0	0	1	0	1	0	0	1	0	$v_{bC1} - v_{aC1} + v_{bC2} - v_{cC2}$
C	7 - 6 - 3	1	0	0	1	0	0	0	1	0	0	0	1	1	0	0	1	0	0	$v_{bC1} - v_{aC1} + v_{bC2} - v_{cC2}$
C	7 - 6 - 4	1	0	0	1	0	0	0	1	0	0	0	1	0	0	1	0	1	0	$v_{bC1} - v_{aC1} + v_{bC2} - v_{cC2} + v_{cC3} - v_{bC3}$
C	7 - 6 - 5	1	0	0	1	0	0	0	1	0	0	0	1	0	0	1	1	0	0	$v_{bC1} - v_{aC1} + v_{bC2} - v_{cC2} + v_{cC3} - v_{aC3}$
C	7 - 6 - 6	1	0	0	1	0	0	0	1	0	0	0	1	0	1	0	0	0	1	$v_{bC1} - v_{aC1} + v_{bC2} - v_{cC2} + v_{bC3} - v_{cC3}$
C	7 - 6 - 7	1	0	0	1	0	0	0	1	0	0	0	1	0	1	0	1	0	0	$v_{bC1} - v_{aC1} + v_{bC2} - v_{cC2} + v_{bC3} - v_{aC3}$
C	7 - 6 - 8	1	0	0	1	0	0	0	1	0	0	0	1	1	0	0	0	0	1	$v_{bC1} - v_{aC1} + v_{bC2} - v_{cC2} + v_{aC3} - v_{cC3}$
С	7 - 6 - 9	1	0	0	1	0	0	0	1	0	0	0	1	1	0	0	0	1	0	$v_{bC1} - v_{aC1} + v_{bC2} - v_{cC2} + v_{aC2} - v_{bC2}$

Tabla 89: Estados válidos de conmutación de cada convertidor matricial 3x1

				C_1						C_2						C_3				
Fase	Est. conmut.	S_1	S_2	S_3	S_4	S_5	S_6	S_1	S_2	S_3	S_4	S_5	S_6	S_1	S_2	S_3	S_4	S_5	S_6	v_{xn}
С	7 - 7 - 1	1	0	0	1	0	0	0	1	0	1	0	0	0	0	1	0	0	1	$v_{bC1} - v_{aC1} + v_{bC2} - v_{aC2}$
С	7 - 7 - 2	1	0	0	1	0	0	0	1	0	1	0	0	0	1	0	0	1	0	$v_{bC1} - v_{aC1} + v_{bC2} - v_{aC2}$
С	7 - 7 - 3	1	0	0	1	0	0	0	1	0	1	0	0	1	0	0	1	0	0	$v_{bC1} - v_{aC1} + v_{bC2} - v_{aC2}$
С	7 - 7 - 4	1	0	0	1	0	0	0	1	0	1	0	0	0	0	1	0	1	0	$v_{bC1} - v_{aC1} + v_{bC2} - v_{aC2} + v_{cC3} - v_{bC3}$
С	7 - 7 - 5	1	0	0	1	0	0	0	1	0	1	0	0	0	0	1	1	0	0	$v_{bC1} - v_{aC1} + v_{bC2} - v_{aC2} + v_{cC3} - v_{aC3}$
С	7 - 7 - 6	1	0	0	1	0	0	0	1	0	1	0	0	0	1	0	0	0	1	$v_{bC1} - v_{aC1} + v_{bC2} - v_{aC2} + v_{bC3} - v_{cC3}$
С	7 - 7 - 7	1	0	0	1	0	0	0	1	0	1	0	0	0	1	0	1	0	0	$v_{bC1} - v_{aC1} + v_{bC2} - v_{aC2} + v_{bC3} - v_{aC3}$
С	7 - 7 - 8	1	0	0	1	0	0	0	1	0	1	0	0	1	0	0	0	0	1	$v_{bC1} - v_{aC1} + v_{bC2} - v_{aC2} + v_{aC3} - v_{cC3}$
С	7 - 7 - 9	1	0	0	1	0	0	0	1	0	1	0	0	1	0	0	0	1	0	$v_{bC1} - v_{aC1} + v_{bC2} - v_{aC2} + v_{aC3} - v_{bC3}$
С	7 - 8 - 1	1	0	0	1	0	0	1	0	0	0	0	1	0	0	1	0	0	1	$v_{bC1} - v_{aC1} + v_{aC2} - v_{cC2}$
С	7 - 8 - 2	1	0	0	1	0	0	1	0	0	0	0	1	0	1	0	0	1	0	$v_{bC1} - v_{aC1} + v_{aC2} - v_{cC2}$
С	7 - 8 - 3	1	0	0	1	0	0	1	0	0	0	0	1	1	0	0	1	0	0	$v_{bC1} - v_{aC1} + v_{aC2} - v_{cC2}$
С	7 - 8 - 4	1	0	0	1	0	0	1	0	0	0	0	1	0	0	1	0	1	0	$v_{bC1} - v_{aC1} + v_{aC2} - v_{cC2} + v_{cC3} - v_{bC3}$
С	7 - 8 - 5	1	0	0	1	0	0	1	0	0	0	0	1	0	0	1	1	0	0	$v_{bC1} - v_{aC1} + v_{aC2} - v_{cC2} + v_{cC3} - v_{aC3}$
С	7 - 8 - 6	1	0	0	1	0	0	1	0	0	0	0	1	0	1	0	0	0	1	$v_{bC1} - v_{aC1} + v_{aC2} - v_{cC2} + v_{bC3} - v_{cC3}$
С	7 - 8 - 7	1	0	0	1	0	0	1	0	0	0	0	1	0	1	0	1	0	0	$v_{bC1} - v_{aC1} + v_{aC2} - v_{cC2} + v_{bC3} - v_{aC3}$
С	7 - 8 - 8	1	0	0	1	0	0	1	0	0	0	0	1	1	0	0	0	0	1	$v_{bC1} - v_{aC1} + v_{aC2} - v_{cC2} + v_{aC3} - v_{cC3}$
С	7 - 8 - 9	1	0	0	1	0	0	1	0	0	0	0	1	1	0	0	0	1	0	$v_{bC1} - v_{aC1} + v_{aC2} - v_{cC2} + v_{aC3} - v_{bC3}$
С	7 - 9 - 1	1	0	0	1	0	0	1	0	0	0	1	0	0	0	1	0	0	1	$v_{bC1} - v_{aC1} + v_{aC2} - v_{bC2}$
С	7 - 9 - 2	1	0	0	1	0	0	1	0	0	0	1	0	0	1	0	0	1	0	$v_{bC1} - v_{aC1} + v_{aC2} - v_{bC2}$
С	7 - 9 - 3	1	0	0	1	0	0	1	0	0	0	1	0	1	0	0	1	0	0	$v_{bC1} - v_{aC1} + v_{aC2} - v_{bC2}$
С	7 - 9 - 4	1	0	0	1	0	0	1	0	0	0	1	0	0	0	1	0	1	0	$v_{bC1} - v_{aC1} + v_{aC2} - v_{bC2} + v_{cC3} - v_{bC3}$
С	7 - 9 - 5	1	0	0	1	0	0	1	0	0	0	1	0	0	0	1	1	0	0	$v_{bC1} - v_{aC1} + v_{aC2} - v_{bC2} + v_{cC3} - v_{aC3}$
С	7 - 9 - 6	1	0	0	1	0	0	1	0	0	0	1	0	0	1	0	0	0	1	$v_{bC1} - v_{aC1} + v_{aC2} - v_{bC2} + v_{bC3} - v_{cC3}$
С	7 - 9 - 7	1	0	0	1	0	0	1	0	0	0	1	0	0	1	0	1	0	0	$v_{bC1} - v_{aC1} + v_{aC2} - v_{bC2} + v_{bC3} - v_{aC3}$
С	7 - 9 - 8	1	0	0	1	0	0	1	0	0	0	1	0	1	0	0	0	0	1	$v_{bC1} - v_{aC1} + v_{aC2} - v_{bC2} + v_{aC3} - v_{cC3}$
С	7 - 9 - 9	1	0	0	1	0	0	1	0	0	0	1	0	1	0	0	0	1	0	$v_{bC1} - v_{aC1} + v_{aC2} - v_{bC2} + v_{aC3} - v_{bC3}$

Tabla 90: Estados válidos de conmutación de cada convertidor matricial 3x1

	1																			
				C_1						C_2						C_3				
Fase	Est. conmut.	S_1	S_2	S_3	S_4	S_5	S_6	S_1	S_2	S_3	S_4	S_5	S_6	S_1	S_2	S_3	S_4	S_5	S_6	v_{xn}
\mathbf{C}	8 - 1 - 1	1	0	0	0	0	1	0	0	1	0	0	1	0	0	1	0	0	1	$v_{aC1} - v_{cC1}$
\mathbf{C}	8 - 1 - 2	1	0	0	0	0	1	0	0	1	0	0	1	0	1	0	0	1	0	$v_{aC1} - v_{cC1}$
\mathbf{C}	8 - 1 - 3	1	0	0	0	0	1	0	0	1	0	0	1	1	0	0	1	0	0	$v_{aC1} - v_{cC1}$
\mathbf{C}	8 - 1 - 4	1	0	0	0	0	1	0	0	1	0	0	1	0	0	1	0	1	0	$v_{aC1} - v_{cC1} + v_{cC3} - v_{bC3}$
\mathbf{C}	8 - 1 - 5	1	0	0	0	0	1	0	0	1	0	0	1	0	0	1	1	0	0	$v_{aC1} - v_{cC1} + v_{cC3} - v_{aC3}$
\mathbf{C}	8 - 1 - 6	1	0	0	0	0	1	0	0	1	0	0	1	0	1	0	0	0	1	$v_{aC1} - v_{cC1} + v_{bC3} - v_{cC3}$
\mathbf{C}	8 - 1 - 7	1	0	0	0	0	1	0	0	1	0	0	1	0	1	0	1	0	0	$v_{aC1} - v_{cC1} + v_{bC3} - v_{aC3}$
\mathbf{C}	8 - 1 - 8	1	0	0	0	0	1	0	0	1	0	0	1	1	0	0	0	0	1	$v_{aC1} - v_{cC1} + v_{aC3} - v_{cC3}$
\mathbf{C}	8 - 1 - 9	1	0	0	0	0	1	0	0	1	0	0	1	1	0	0	0	1	0	$v_{aC1} - v_{cC1} + v_{aC3} - v_{bC3}$
\mathbf{C}	8 - 2 - 1	1	0	0	0	0	1	0	1	0	0	1	0	0	0	1	0	0	1	$v_{aC1} - v_{cC1}$
\mathbf{C}	8 - 2 - 2	1	0	0	0	0	1	0	1	0	0	1	0	0	1	0	0	1	0	$v_{aC1} - v_{cC1}$
\mathbf{C}	8 - 2 - 3	1	0	0	0	0	1	0	1	0	0	1	0	1	0	0	1	0	0	$v_{aC1} - v_{cC1}$
\mathbf{C}	8 - 2 - 4	1	0	0	0	0	1	0	1	0	0	1	0	0	0	1	0	1	0	$v_{aC1} - v_{cC1} + v_{cC3} - v_{bC3}$
\mathbf{C}	8 - 2 - 5	1	0	0	0	0	1	0	1	0	0	1	0	0	0	1	1	0	0	$v_{aC1} - v_{cC1} + v_{cC3} - v_{aC3}$
\mathbf{C}	8 - 2 - 6	1	0	0	0	0	1	0	1	0	0	1	0	0	1	0	0	0	1	$v_{aC1} - v_{cC1} + v_{bC3} - v_{cC3}$
\mathbf{C}	8 - 2 - 7	1	0	0	0	0	1	0	1	0	0	1	0	0	1	0	1	0	0	$v_{aC1} - v_{cC1} + v_{bC3} - v_{aC3}$
\mathbf{C}	8 - 2 - 8	1	0	0	0	0	1	0	1	0	0	1	0	1	0	0	0	0	1	$v_{aC1} - v_{cC1} + v_{aC3} - v_{cC3}$
\mathbf{C}	8 - 2 - 9	1	0	0	0	0	1	0	1	0	0	1	0	1	0	0	0	1	0	$v_{aC1} - v_{cC1} + v_{aC3} - v_{bC3}$
\mathbf{C}	8 - 3 - 1	1	0	0	0	0	1	1	0	0	1	0	0	0	0	1	0	0	1	$v_{aC1} - v_{cC1}$
\mathbf{C}	8 - 3 - 2	1	0	0	0	0	1	1	0	0	1	0	0	0	1	0	0	1	0	$v_{aC1} - v_{cC1}$
\mathbf{C}	8 - 3 - 3	1	0	0	0	0	1	1	0	0	1	0	0	1	0	0	1	0	0	$v_{aC1} - v_{cC1}$
\mathbf{C}	8 - 3 - 4	1	0	0	0	0	1	1	0	0	1	0	0	0	0	1	0	1	0	$v_{aC1} - v_{cC1} + v_{cC3} - v_{bC3}$
\mathbf{C}	8 - 3 - 5	1	0	0	0	0	1	1	0	0	1	0	0	0	0	1	1	0	0	$v_{aC1} - v_{cC1} + v_{cC3} - v_{aC3}$
\mathbf{C}	8 - 3 - 6	1	0	0	0	0	1	1	0	0	1	0	0	0	1	0	0	0	1	$v_{aC1} - v_{cC1} + v_{bC3} - v_{cC3}$
С	8 - 3 - 7	1	0	0	0	0	1	1	0	0	1	0	0	0	1	0	1	0	0	$v_{aC1} - v_{cC1} + v_{bC3} - v_{aC3}$
С	8 - 3 - 8	1	0	0	0	0	1	1	0	0	1	0	0	1	0	0	0	0	1	$v_{aC1} - v_{cC1} + v_{aC3} - v_{cC3}$
С	8 - 3 - 9	1	0	0	0	0	1	1	0	0	1	0	0	1	0	0	0	1	0	$v_{aC1} - v_{cC1} + v_{aC3} - v_{bC3}$

Tabla 91: Estados válidos de conmutación de cada convertidor matricial 3x1

				C_1						C_2						C_3				
Fase	Est. conmut.	S_1	S_2	S_3	S_4	S_5	S_6	S_1	S_2	S_3	S_4	S_5	S_6	S_1	S_2	S_3	S_4	S_5	S_6	v_{xn}
С	8 - 4 - 1	1	0	0	0	0	1	0	0	1	0	1	0	0	0	1	0	0	1	$v_{aC1} - v_{cC1} + v_{cC2} - v_{bC2}$
С	8 - 4 - 2	1	0	0	0	0	1	0	0	1	0	1	0	0	1	0	0	1	0	$v_{aC1} - v_{cC1} + v_{cC2} - v_{bC2}$
С	8 - 4 - 3	1	0	0	0	0	1	0	0	1	0	1	0	1	0	0	1	0	0	$v_{aC1} - v_{cC1} + v_{cC2} - v_{bC2}$
С	8 - 4 - 4	1	0	0	0	0	1	0	0	1	0	1	0	0	0	1	0	1	0	$v_{aC1} - v_{cC1} + v_{cC2} - v_{bC2} + v_{cC3} - v_{bC3}$
С	8 - 4 - 5	1	0	0	0	0	1	0	0	1	0	1	0	0	0	1	1	0	0	$v_{aC1} - v_{cC1} + v_{cC2} - v_{bC2} + v_{cC3} - v_{aC3}$
С	8 - 4 - 6	1	0	0	0	0	1	0	0	1	0	1	0	0	1	0	0	0	1	$v_{aC1} - v_{cC1} + v_{cC2} - v_{bC2} + v_{bC3} - v_{cC3}$
С	8 - 4 - 7	1	0	0	0	0	1	0	0	1	0	1	0	0	1	0	1	0	0	$v_{aC1} - v_{cC1} + v_{cC2} - v_{bC2} + v_{bC3} - v_{aC3}$
С	8 - 4 - 8	1	0	0	0	0	1	0	0	1	0	1	0	1	0	0	0	0	1	$v_{aC1} - v_{cC1} + v_{cC2} - v_{bC2} + v_{aC3} - v_{cC3}$
\mathbf{C}	8 - 4 - 9	1	0	0	0	0	1	0	0	1	0	1	0	1	0	0	0	1	0	$v_{aC1} - v_{cC1} + v_{cC2} - v_{bC2} + v_{aC3} - v_{bC3}$
С	8 - 5 - 1	1	0	0	0	0	1	0	0	1	1	0	0	0	0	1	0	0	1	$v_{aC1} - v_{cC1} + v_{cC2} - v_{aC2}$
\mathbf{C}	8 - 5 - 2	1	0	0	0	0	1	0	0	1	1	0	0	0	1	0	0	1	0	$v_{aC1} - v_{cC1} + v_{cC2} - v_{aC2}$
\mathbf{C}	8 - 5 - 3	1	0	0	0	0	1	0	0	1	1	0	0	1	0	0	1	0	0	$v_{aC1} - v_{cC1} + v_{cC2} - v_{aC2}$
\mathbf{C}	8 - 5 - 4	1	0	0	0	0	1	0	0	1	1	0	0	0	0	1	0	1	0	$v_{aC1} - v_{cC1} + v_{cC2} - v_{aC2} + v_{cC3} - v_{bC3}$
\mathbf{C}	8 - 5 - 5	1	0	0	0	0	1	0	0	1	1	0	0	0	0	1	1	0	0	$v_{aC1} - v_{cC1} + v_{cC2} - v_{aC2} + v_{cC3} - v_{aC3}$
\mathbf{C}	8 - 5 - 6	1	0	0	0	0	1	0	0	1	1	0	0	0	1	0	0	0	1	$v_{aC1} - v_{cC1} + v_{cC2} - v_{aC2} + v_{bC3} - v_{cC3}$
\mathbf{C}	8 - 5 - 7	1	0	0	0	0	1	0	0	1	1	0	0	0	1	0	1	0	0	$v_{aC1} - v_{cC1} + v_{cC2} - v_{aC2} + v_{bC3} - v_{aC3}$
\mathbf{C}	8 - 5 - 8	1	0	0	0	0	1	0	0	1	1	0	0	1	0	0	0	0	1	$v_{aC1} - v_{cC1} + v_{cC2} - v_{aC2} + v_{aC3} - v_{cC3}$
С	8 - 5 - 9	1	0	0	0	0	1	0	0	1	1	0	0	1	0	0	0	1	0	$v_{aC1} - v_{cC1} + v_{cC2} - v_{aC2} + v_{aC3} - v_{bC3}$
С	8 - 6 - 1	1	0	0	0	0	1	0	1	0	0	0	1	0	0	1	0	0	1	$v_{aC1} - v_{cC1} + v_{bC2} - v_{cC2}$
С	8 - 6 - 2	1	0	0	0	0	1	0	1	0	0	0	1	0	1	0	0	1	0	$v_{aC1} - v_{cC1} + v_{bC2} - v_{cC2}$
С	8 - 6 - 3	1	0	0	0	0	1	0	1	0	0	0	1	1	0	0	1	0	0	$v_{aC1} - v_{cC1} + v_{bC2} - v_{cC2}$
С	8 - 6 - 4	1	0	0	0	0	1	0	1	0	0	0	1	0	0	1	0	1	0	$v_{aC1} - v_{cC1} + v_{bC2} - v_{cC2} + v_{cC3} - v_{bC3}$
С	8 - 6 - 5	1	0	0	0	0	1	0	1	0	0	0	1	0	0	1	1	0	0	$v_{aC1} - v_{cC1} + v_{bC2} - v_{cC2} + v_{cC3} - v_{aC3}$
\mathbf{C}	8 - 6 - 6	1	0	0	0	0	1	0	1	0	0	0	1	0	1	0	0	0	1	$v_{aC1} - v_{cC1} + v_{bC2} - v_{cC2} + v_{bC3} - v_{cC3}$
\mathbf{C}	8 - 6 - 7	1	0	0	0	0	1	0	1	0	0	0	1	0	1	0	1	0	0	$v_{aC1} - v_{cC1} + v_{bC2} - v_{cC2} + v_{bC3} - v_{aC3}$
\mathbf{C}	8 - 6 - 8	1	0	0	0	0	1	0	1	0	0	0	1	1	0	0	0	0	1	$v_{aC1} - v_{cC1} + v_{bC2} - v_{cC2} + v_{aC3} - v_{cC3}$
С	8 - 6 - 9	1	0	0	0	0	1	0	1	0	0	0	1	1	0	0	0	1	0	$v_{aC1} - v_{cC1} + v_{bC2} - v_{cC2} + v_{aC2} - v_{bC2}$

Tabla 92: Estados válidos de conmutación de cada convertidor matricial $3\mathrm{x}1$

				C_1						C_2						C_3				
Fase	Est. conmut.	S_1	S_2	S_3	S_4	S_5	S_6	S_1	S_2	S_3	S_4	S_5	S_6	S_1	S_2	S_3	S_4	S_5	S_6	v_{xn}
С	8 - 7 - 1	1	0	0	0	0	1	0	1	0	1	0	0	0	0	1	0	0	1	$v_{aC1} - v_{cC1} + v_{bC2} - v_{aC2}$
\mathbf{C}	8 - 7 - 2	1	0	0	0	0	1	0	1	0	1	0	0	0	1	0	0	1	0	$v_{aC1} - v_{cC1} + v_{bC2} - v_{aC2}$
\mathbf{C}	8 - 7 - 3	1	0	0	0	0	1	0	1	0	1	0	0	1	0	0	1	0	0	$v_{aC1} - v_{cC1} + v_{bC2} - v_{aC2}$
\mathbf{C}	8 - 7 - 4	1	0	0	0	0	1	0	1	0	1	0	0	0	0	1	0	1	0	$v_{aC1} - v_{cC1} + v_{bC2} - v_{aC2} + v_{cC3} - v_{bC3}$
\mathbf{C}	8 - 7 - 5	1	0	0	0	0	1	0	1	0	1	0	0	0	0	1	1	0	0	$v_{aC1} - v_{cC1} + v_{bC2} - v_{aC2} + v_{cC3} - v_{aC3}$
\mathbf{C}	8 - 7 - 6	1	0	0	0	0	1	0	1	0	1	0	0	0	1	0	0	0	1	$v_{aC1} - v_{cC1} + v_{bC2} - v_{aC2} + v_{bC3} - v_{cC3}$
\mathbf{C}	8 - 7 - 7	1	0	0	0	0	1	0	1	0	1	0	0	0	1	0	1	0	0	$v_{aC1} - v_{cC1} + v_{bC2} - v_{aC2} + v_{bC3} - v_{aC3}$
\mathbf{C}	8 - 7 - 8	1	0	0	0	0	1	0	1	0	1	0	0	1	0	0	0	0	1	$v_{aC1} - v_{cC1} + v_{bC2} - v_{aC2} + v_{aC3} - v_{cC3}$
\mathbf{C}	8 - 7 - 9	1	0	0	0	0	1	0	1	0	1	0	0	1	0	0	0	1	0	$v_{aC1} - v_{cC1} + v_{bC2} - v_{aC2} + v_{aC3} - v_{bC3}$
\mathbf{C}	8 - 8 - 1	1	0	0	0	0	1	1	0	0	0	0	1	0	0	1	0	0	1	$v_{aC1} - v_{cC1} + v_{aC2} - v_{cC2}$
\mathbf{C}	8 - 8 - 2	1	0	0	0	0	1	1	0	0	0	0	1	0	1	0	0	1	0	$v_{aC1} - v_{cC1} + v_{aC2} - v_{cC2}$
\mathbf{C}	8 - 8 - 3	1	0	0	0	0	1	1	0	0	0	0	1	1	0	0	1	0	0	$v_{aC1} - v_{cC1} + v_{aC2} - v_{cC2}$
\mathbf{C}	8 - 8 - 4	1	0	0	0	0	1	1	0	0	0	0	1	0	0	1	0	1	0	$v_{aC1} - v_{cC1} + v_{aC2} - v_{cC2} + v_{cC3} - v_{bC3}$
\mathbf{C}	8 - 8 - 5	1	0	0	0	0	1	1	0	0	0	0	1	0	0	1	1	0	0	$v_{aC1} - v_{cC1} + v_{aC2} - v_{cC2} + v_{cC3} - v_{aC3}$
\mathbf{C}	8 - 8 - 6	1	0	0	0	0	1	1	0	0	0	0	1	0	1	0	0	0	1	$v_{aC1} - v_{cC1} + v_{aC2} - v_{cC2} + v_{bC3} - v_{cC3}$
\mathbf{C}	8 - 8 - 7	1	0	0	0	0	1	1	0	0	0	0	1	0	1	0	1	0	0	$v_{aC1} - v_{cC1} + v_{aC2} - v_{cC2} + v_{bC3} - v_{aC3}$
\mathbf{C}	8 - 8 - 8	1	0	0	0	0	1	1	0	0	0	0	1	1	0	0	0	0	1	$v_{aC1} - v_{cC1} + v_{aC2} - v_{cC2} + v_{aC3} - v_{cC3}$
\mathbf{C}	8 - 8 - 9	1	0	0	0	0	1	1	0	0	0	0	1	1	0	0	0	1	0	$v_{aC1} - v_{cC1} + v_{aC2} - v_{cC2} + v_{aC3} - v_{bC3}$
\mathbf{C}	8 - 9 - 1	1	0	0	0	0	1	1	0	0	0	1	0	0	0	1	0	0	1	$v_{aC1} - v_{cC1} + v_{aC2} - v_{bC2}$
\mathbf{C}	8 - 9 - 2	1	0	0	0	0	1	1	0	0	0	1	0	0	1	0	0	1	0	$v_{aC1} - v_{cC1} + v_{aC2} - v_{bC2}$
\mathbf{C}	8 - 9 - 3	1	0	0	0	0	1	1	0	0	0	1	0	1	0	0	1	0	0	$v_{aC1} - v_{cC1} + v_{aC2} - v_{bC2}$
\mathbf{C}	8 - 9 - 4	1	0	0	0	0	1	1	0	0	0	1	0	0	0	1	0	1	0	$v_{aC1} - v_{cC1} + v_{aC2} - v_{bC2} + v_{cC3} - v_{bC3}$
\mathbf{C}	8 - 9 - 5	1	0	0	0	0	1	1	0	0	0	1	0	0	0	1	1	0	0	$v_{aC1} - v_{cC1} + v_{aC2} - v_{bC2} + v_{cC3} - v_{aC3}$
\mathbf{C}	8 - 9 - 6	1	0	0	0	0	1	1	0	0	0	1	0	0	1	0	0	0	1	$v_{aC1} - v_{cC1} + v_{aC2} - v_{bC2} + v_{bC3} - v_{cC3}$
\mathbf{C}	8 - 9 - 7	1	0	0	0	0	1	1	0	0	0	1	0	0	1	0	1	0	0	$v_{aC1} - v_{cC1} + v_{aC2} - v_{bC2} + v_{bC3} - v_{aC3}$
\mathbf{C}	8 - 9 - 8	1	0	0	0	0	1	1	0	0	0	1	0	1	0	0	0	0	1	$v_{aC1} - v_{cC1} + v_{aC2} - v_{bC2} + v_{aC3} - v_{cC3}$
\mathbf{C}	8 - 9 - 9	1	0	0	0	0	1	1	0	0	0	1	0	1	0	0	0	1	0	$v_{aC1} - v_{cC1} + v_{aC2} - v_{bC2} + v_{aC3} - v_{bC3}$

Tabla 93: Estados válidos de conmutación de cada convertidor matricial 3x1

				C_1						C_2						C_3				
Fase	Est. conmut.	S_1	S_2	S_3	S_4	S_5	S_6	S_1	S_2	S_3	S_4	S_5	S_6	S_1	S_2	S_3	S_4	S_5	S_6	v_{xn}
С	9 - 1 - 1	1	0	0	0	1	0	0	0	1	0	0	1	0	0	1	0	0	1	$v_{aC1} - v_{bC1}$
\mathbf{C}	9 - 1 - 2	1	0	0	0	1	0	0	0	1	0	0	1	0	1	0	0	1	0	$v_{aC1} - v_{bC1}$
\mathbf{C}	9 - 1 - 3	1	0	0	0	1	0	0	0	1	0	0	1	1	0	0	1	0	0	$v_{aC1} - v_{bC1}$
\mathbf{C}	9 - 1 - 4	1	0	0	0	1	0	0	0	1	0	0	1	0	0	1	0	1	0	$v_{aC1} - v_{bC1} + v_{cC3} - v_{bC3}$
\mathbf{C}	9 - 1 - 5	1	0	0	0	1	0	0	0	1	0	0	1	0	0	1	1	0	0	$v_{aC1} - v_{bC1} + v_{cC3} - v_{aC3}$
\mathbf{C}	9 - 1 - 6	1	0	0	0	1	0	0	0	1	0	0	1	0	1	0	0	0	1	$v_{aC1} - v_{bC1} + v_{bC3} - v_{cC3}$
\mathbf{C}	9 - 1 - 7	1	0	0	0	1	0	0	0	1	0	0	1	0	1	0	1	0	0	$v_{aC1} - v_{bC1} + v_{bC3} - v_{aC3}$
\mathbf{C}	9 - 1 - 8	1	0	0	0	1	0	0	0	1	0	0	1	1	0	0	0	0	1	$v_{aC1} - v_{bC1} + v_{aC3} - v_{cC3}$
\mathbf{C}	9 - 1 - 9	1	0	0	0	1	0	0	0	1	0	0	1	1	0	0	0	1	0	$v_{aC1} - v_{bC1} + v_{aC3} - v_{bC3}$
\mathbf{C}	9 - 2 - 1	1	0	0	0	1	0	0	1	0	0	1	0	0	0	1	0	0	1	$v_{aC1} - v_{bC1}$
\mathbf{C}	9 - 2 - 2	1	0	0	0	1	0	0	1	0	0	1	0	0	1	0	0	1	0	$v_{aC1} - v_{bC1}$
\mathbf{C}	9 - 2 - 3	1	0	0	0	1	0	0	1	0	0	1	0	1	0	0	1	0	0	$v_{aC1} - v_{bC1}$
\mathbf{C}	9 - 2 - 4	1	0	0	0	1	0	0	1	0	0	1	0	0	0	1	0	1	0	$v_{aC1} - v_{bC1} + v_{cC3} - v_{bC3}$
\mathbf{C}	9 - 2 - 5	1	0	0	0	1	0	0	1	0	0	1	0	0	0	1	1	0	0	$v_{aC1} - v_{bC1} + v_{cC3} - v_{aC3}$
\mathbf{C}	9 - 2 - 6	1	0	0	0	1	0	0	1	0	0	1	0	0	1	0	0	0	1	$v_{aC1} - v_{bC1} + v_{bC3} - v_{cC3}$
\mathbf{C}	9 - 2 - 7	1	0	0	0	1	0	0	1	0	0	1	0	0	1	0	1	0	0	$v_{aC1} - v_{bC1} + v_{bC3} - v_{aC3}$
\mathbf{C}	9 - 2 - 8	1	0	0	0	1	0	0	1	0	0	1	0	1	0	0	0	0	1	$v_{aC1} - v_{bC1} + v_{aC3} - v_{cC3}$
\mathbf{C}	9 - 2 - 9	1	0	0	0	1	0	0	1	0	0	1	0	1	0	0	0	1	0	$v_{aC1} - v_{bC1} + v_{aC3} - v_{bC3}$
\mathbf{C}	9 - 3 - 1	1	0	0	0	1	0	1	0	0	1	0	0	0	0	1	0	0	1	$v_{aC1} - v_{bC1}$
\mathbf{C}	9 - 3 - 2	1	0	0	0	1	0	1	0	0	1	0	0	0	1	0	0	1	0	$v_{aC1} - v_{bC1}$
\mathbf{C}	9 - 3 - 3	1	0	0	0	1	0	1	0	0	1	0	0	1	0	0	1	0	0	$v_{aC1} - v_{bC1}$
\mathbf{C}	9 - 3 - 4	1	0	0	0	1	0	1	0	0	1	0	0	0	0	1	0	1	0	$v_{aC1} - v_{bC1} + v_{cC3} - v_{bC3}$
\mathbf{C}	9 - 3 - 5	1	0	0	0	1	0	1	0	0	1	0	0	0	0	1	1	0	0	$v_{aC1} - v_{bC1} + v_{cC3} - v_{aC3}$
\mathbf{C}	9 - 3 - 6	1	0	0	0	1	0	1	0	0	1	0	0	0	1	0	0	0	1	$v_{aC1} - v_{bC1} + v_{bC3} - v_{cC3}$
С	9 - 3 - 7	1	0	0	0	1	0	1	0	0	1	0	0	0	1	0	1	0	0	$v_{aC1} - v_{bC1} + v_{bC3} - v_{aC3}$
С	9 - 3 - 8	1	0	0	0	1	0	1	0	0	1	0	0	1	0	0	0	0	1	$v_{aC1} - v_{bC1} + v_{aC3} - v_{cC3}$
\mathbf{C}	9 - 3 - 9	1	0	0	0	1	0	1	0	0	1	0	0	1	0	0	0	1	0	$v_{aC1} - v_{bC1} + v_{aC3} - v_{bC3}$

Tabla 94: Estados válidos de conmutación de cada convertidor matricial 3x1

				C_1						C_2						C_3				
Fase	Est. conmut.	S_1	S_2	S_3	S_4	S_5	S_6	S_1	S_2	S_3	S_4	S_5	S_6	S_1	S_2	S_3	S_4	S_5	S_6	v_{xn}
С	9 - 4 - 1	1	0	0	0	1	0	0	0	1	0	1	0	0	0	1	0	0	1	$v_{aC1} - v_{bC1} + v_{cC2} - v_{bC2}$
\mathbf{C}	9 - 4 - 2	1	0	0	0	1	0	0	0	1	0	1	0	0	1	0	0	1	0	$v_{aC1} - v_{bC1} + v_{cC2} - v_{bC2}$
С	9 - 4 - 3	1	0	0	0	1	0	0	0	1	0	1	0	1	0	0	1	0	0	$v_{aC1} - v_{bC1} + v_{cC2} - v_{bC2}$
С	9 - 4 - 4	1	0	0	0	1	0	0	0	1	0	1	0	0	0	1	0	1	0	$v_{aC1} - v_{bC1} + v_{cC2} - v_{bC2} + v_{cC3} - v_{bC3}$
С	9 - 4 - 5	1	0	0	0	1	0	0	0	1	0	1	0	0	0	1	1	0	0	$v_{aC1} - v_{bC1} + v_{cC2} - v_{bC2} + v_{cC3} - v_{aC3}$
С	9 - 4 - 6	1	0	0	0	1	0	0	0	1	0	1	0	0	1	0	0	0	1	$v_{aC1} - v_{bC1} + v_{cC2} - v_{bC2} + v_{bC3} - v_{cC3}$
С	9 - 4 - 7	1	0	0	0	1	0	0	0	1	0	1	0	0	1	0	1	0	0	$v_{aC1} - v_{bC1} + v_{cC2} - v_{bC2} + v_{bC3} - v_{aC3}$
С	9 - 4 - 8	1	0	0	0	1	0	0	0	1	0	1	0	1	0	0	0	0	1	$v_{aC1} - v_{bC1} + v_{cC2} - v_{bC2} + v_{aC3} - v_{cC3}$
С	9 - 4 - 9	1	0	0	0	1	0	0	0	1	0	1	0	1	0	0	0	1	0	$v_{aC1} - v_{bC1} + v_{cC2} - v_{bC2} + v_{aC3} - v_{bC3}$
\mathbf{C}	9 - 5 - 1	1	0	0	0	1	0	0	0	1	1	0	0	0	0	1	0	0	1	$v_{aC1} - v_{bC1} + v_{cC2} - v_{aC2}$
\mathbf{C}	9 - 5 - 2	1	0	0	0	1	0	0	0	1	1	0	0	0	1	0	0	1	0	$v_{aC1} - v_{bC1} + v_{cC2} - v_{aC2}$
\mathbf{C}	9 - 5 - 3	1	0	0	0	1	0	0	0	1	1	0	0	1	0	0	1	0	0	$v_{aC1} - v_{bC1} + v_{cC2} - v_{aC2}$
\mathbf{C}	9 - 5 - 4	1	0	0	0	1	0	0	0	1	1	0	0	0	0	1	0	1	0	$v_{aC1} - v_{bC1} + v_{cC2} - v_{aC2} + v_{cC3} - v_{bC3}$
\mathbf{C}	9 - 5 - 5	1	0	0	0	1	0	0	0	1	1	0	0	0	0	1	1	0	0	$v_{aC1} - v_{bC1} + v_{cC2} - v_{aC2} + v_{cC3} - v_{aC3}$
\mathbf{C}	9 - 5 - 6	1	0	0	0	1	0	0	0	1	1	0	0	0	1	0	0	0	1	$v_{aC1} - v_{bC1} + v_{cC2} - v_{aC2} + v_{bC3} - v_{cC3}$
\mathbf{C}	9 - 5 - 7	1	0	0	0	1	0	0	0	1	1	0	0	0	1	0	1	0	0	$v_{aC1} - v_{bC1} + v_{cC2} - v_{aC2} + v_{bC3} - v_{aC3}$
\mathbf{C}	9 - 5 - 8	1	0	0	0	1	0	0	0	1	1	0	0	1	0	0	0	0	1	$v_{aC1} - v_{bC1} + v_{cC2} - v_{aC2} + v_{aC3} - v_{cC3}$
\mathbf{C}	9 - 5 - 9	1	0	0	0	1	0	0	0	1	1	0	0	1	0	0	0	1	0	$v_{aC1} - v_{bC1} + v_{cC2} - v_{aC2} + v_{aC3} - v_{bC3}$
\mathbf{C}	9 - 6 - 1	1	0	0	0	1	0	0	1	0	0	0	1	0	0	1	0	0	1	$v_{aC1} - v_{bC1} + v_{bC2} - v_{cC2}$
\mathbf{C}	9 - 6 - 2	1	0	0	0	1	0	0	1	0	0	0	1	0	1	0	0	1	0	$v_{aC1} - v_{bC1} + v_{bC2} - v_{cC2}$
\mathbf{C}	9 - 6 - 3	1	0	0	0	1	0	0	1	0	0	0	1	1	0	0	1	0	0	$v_{aC1} - v_{bC1} + v_{bC2} - v_{cC2}$
\mathbf{C}	9 - 6 - 4	1	0	0	0	1	0	0	1	0	0	0	1	0	0	1	0	1	0	$v_{aC1} - v_{bC1} + v_{bC2} - v_{cC2} + v_{cC3} - v_{bC3}$
\mathbf{C}	9 - 6 - 5	1	0	0	0	1	0	0	1	0	0	0	1	0	0	1	1	0	0	$v_{aC1} - v_{bC1} + v_{bC2} - v_{cC2} + v_{cC3} - v_{aC3}$
\mathbf{C}	9 - 6 - 6	1	0	0	0	1	0	0	1	0	0	0	1	0	1	0	0	0	1	$v_{aC1} - v_{bC1} + v_{bC2} - v_{cC2} + v_{bC3} - v_{cC3}$
\mathbf{C}	9 - 6 - 7	1	0	0	0	1	0	0	1	0	0	0	1	0	1	0	1	0	0	$v_{aC1} - v_{bC1} + v_{bC2} - v_{cC2} + v_{bC3} - v_{aC3}$
\mathbf{C}	9 - 6 - 8	1	0	0	0	1	0	0	1	0	0	0	1	1	0	0	0	0	1	$v_{aC1} - v_{bC1} + v_{bC2} - v_{cC2} + v_{aC3} - v_{cC3}$
\mathbf{C}	9 - 6 - 9	1	0	0	0	1	0	0	1	0	0	0	1	1	0	0	0	1	0	$v_{aC1} - v_{bC1} + v_{bC2} - v_{cC2} + v_{aC2} - v_{bC2}$

Tabla 95: Estados válidos de conmutación de cada convertidor matricial 3x1

		C_1							C_2							C_3				
Fase	Est. conmut.	S_1	S_2	S_3	S_4	S_5	S_6	S_1	S_2	S_3	S_4	S_5	S_6	S_1	S_2	S_3	S_4	S_5	S_6	v_{xn}
С	9 - 7 - 1	1	0	0	0	1	0	0	1	0	1	0	0	0	0	1	0	0	1	$v_{aC1} - v_{bC1} + v_{bC2} - v_{aC2}$
\mathbf{C}	9 - 7 - 2	1	0	0	0	1	0	0	1	0	1	0	0	0	1	0	0	1	0	$v_{aC1} - v_{bC1} + v_{bC2} - v_{aC2}$
\mathbf{C}	9 - 7 - 3	1	0	0	0	1	0	0	1	0	1	0	0	1	0	0	1	0	0	$v_{aC1} - v_{bC1} + v_{bC2} - v_{aC2}$
\mathbf{C}	9 - 7 - 4	1	0	0	0	1	0	0	1	0	1	0	0	0	0	1	0	1	0	$v_{aC1} - v_{bC1} + v_{bC2} - v_{aC2} + v_{cC3} - v_{bC3}$
\mathbf{C}	9 - 7 - 5	1	0	0	0	1	0	0	1	0	1	0	0	0	0	1	1	0	0	$v_{aC1} - v_{bC1} + v_{bC2} - v_{aC2} + v_{cC3} - v_{aC3}$
\mathbf{C}	9 - 7 - 6	1	0	0	0	1	0	0	1	0	1	0	0	0	1	0	0	0	1	$v_{aC1} - v_{bC1} + v_{bC2} - v_{aC2} + v_{bC3} - v_{cC3}$
\mathbf{C}	9 - 7 - 7	1	0	0	0	1	0	0	1	0	1	0	0	0	1	0	1	0	0	$v_{aC1} - v_{bC1} + v_{bC2} - v_{aC2} + v_{bC3} - v_{aC3}$
\mathbf{C}	9 - 7 - 8	1	0	0	0	1	0	0	1	0	1	0	0	1	0	0	0	0	1	$v_{aC1} - v_{bC1} + v_{bC2} - v_{aC2} + v_{aC3} - v_{cC3}$
\mathbf{C}	9 - 7 - 9	1	0	0	0	1	0	0	1	0	1	0	0	1	0	0	0	1	0	$v_{aC1} - v_{bC1} + v_{bC2} - v_{aC2} + v_{aC3} - v_{bC3}$
\mathbf{C}	9 - 8 - 1	1	0	0	0	1	0	1	0	0	0	0	1	0	0	1	0	0	1	$v_{aC1} - v_{bC1} + v_{aC2} - v_{cC2}$
\mathbf{C}	9 - 8 - 2	1	0	0	0	1	0	1	0	0	0	0	1	0	1	0	0	1	0	$v_{aC1} - v_{bC1} + v_{aC2} - v_{cC2}$
\mathbf{C}	9 - 8 - 3	1	0	0	0	1	0	1	0	0	0	0	1	1	0	0	1	0	0	$v_{aC1} - v_{bC1} + v_{aC2} - v_{cC2}$
\mathbf{C}	9 - 8 - 4	1	0	0	0	1	0	1	0	0	0	0	1	0	0	1	0	1	0	$v_{aC1} - v_{bC1} + v_{aC2} - v_{cC2} + v_{cC3} - v_{bC3}$
\mathbf{C}	9 - 8 - 5	1	0	0	0	1	0	1	0	0	0	0	1	0	0	1	1	0	0	$v_{aC1} - v_{bC1} + v_{aC2} - v_{cC2} + v_{cC3} - v_{aC3}$
\mathbf{C}	9 - 8 - 6	1	0	0	0	1	0	1	0	0	0	0	1	0	1	0	0	0	1	$v_{aC1} - v_{bC1} + v_{aC2} - v_{cC2} + v_{bC3} - v_{cC3}$
\mathbf{C}	9 - 8 - 7	1	0	0	0	1	0	1	0	0	0	0	1	0	1	0	1	0	0	$v_{aC1} - v_{bC1} + v_{aC2} - v_{cC2} + v_{bC3} - v_{aC3}$
\mathbf{C}	9 - 8 - 8	1	0	0	0	1	0	1	0	0	0	0	1	1	0	0	0	0	1	$v_{aC1} - v_{bC1} + v_{aC2} - v_{cC2} + v_{aC3} - v_{cC3}$
\mathbf{C}	9 - 8 - 9	1	0	0	0	1	0	1	0	0	0	0	1	1	0	0	0	1	0	$v_{aC1} - v_{bC1} + v_{aC2} - v_{cC2} + v_{aC3} - v_{bC3}$
\mathbf{C}	9 - 9 - 1	1	0	0	0	1	0	1	0	0	0	1	0	0	0	1	0	0	1	$v_{aC1} - v_{bC1} + v_{aC2} - v_{bC2}$
\mathbf{C}	9 - 9 - 2	1	0	0	0	1	0	1	0	0	0	1	0	0	1	0	0	1	0	$v_{aC1} - v_{bC1} + v_{aC2} - v_{bC2}$
\mathbf{C}	9 - 9 - 3	1	0	0	0	1	0	1	0	0	0	1	0	1	0	0	1	0	0	$v_{aC1} - v_{bC1} + v_{aC2} - v_{bC2}$
\mathbf{C}	9 - 9 - 4	1	0	0	0	1	0	1	0	0	0	1	0	0	0	1	0	1	0	$v_{aC1} - v_{bC1} + v_{aC2} - v_{bC2} + v_{cC3} - v_{bC3}$
\mathbf{C}	9 - 9 - 5	1	0	0	0	1	0	1	0	0	0	1	0	0	0	1	1	0	0	$v_{aC1} - v_{bC1} + v_{aC2} - v_{bC2} + v_{cC3} - v_{aC3}$
\mathbf{C}	9 - 9 - 6	1	0	0	0	1	0	1	0	0	0	1	0	0	1	0	0	0	1	$v_{aC1} - v_{bC1} + v_{aC2} - v_{bC2} + v_{bC3} - v_{cC3}$
\mathbf{C}	9 - 9 - 7	1	0	0	0	1	0	1	0	0	0	1	0	0	1	0	1	0	0	$v_{aC1} - v_{bC1} + v_{aC2} - v_{bC2} + v_{bC3} - v_{aC3}$
\mathbf{C}	9 - 9 - 8	1	0	0	0	1	0	1	0	0	0	1	0	1	0	0	0	0	1	$v_{aC1} - v_{bC1} + v_{aC2} - v_{bC2} + v_{aC3} - v_{cC3}$
\mathbf{C}	9 - 9 - 9	1	0	0	0	1	0	1	0	0	0	1	0	1	0	0	0	1	0	$v_{aC1} - v_{bC1} + v_{aC2} - v_{bC2} + v_{aC3} - v_{bC3}$

Tabla 96: Estados válidos de conmutación de cada convertidor matricial 3x1