DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS Volume **12**, Number **3**, March **2005** Website: http://aimSciences.org

pp. 481 - 500

ON A GENERALIZED YORKE CONDITION FOR SCALAR DELAYED POPULATION MODELS

Teresa Faria

Departamento de Matemática, Faculdade de Ciências, and CMAF, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal

Eduardo Liz

Departamento de Matemática Aplicada II, E.T.S.I. Telecomunicación Universidad de Vigo, Campus Marcosende, 36280 Vigo, Spain

José J. Oliveira

Departamento de Matemática, and CMAT, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal

Sergei Trofimchuk

Instituto de Matemática y Física, Universidad de Talca, Casilla 747, Talca, Chile

(Dedicated to Professor István Győri on the occasion of his 60th birthday)

(Communicated by Hans-Otto Walther)

Abstract. For a scalar delayed differential equation $\dot{x}(t) = f(t, x_t)$, we give sufficient conditions for the global attractivity of its zero solution. Some technical assumptions are imposed to insure boundedness of solutions and attractivity of non-oscillatory solutions. For controlling the behaviour of oscillatory solutions, we require a very general condition of Yorke type, together with a 3/2-condition. The results are particularly interesting when applied to scalar differential equations with delays which have served as models in populations dynamics, and can be written in the general form $\dot{x}(t) = (1 + x(t))F(t, x_t)$. Applications to several models are presented, improving known results in the literature.

1. Introduction. Let $C := C([-h, 0]; \mathbb{R})$ be the space of continuous functions from [-h, 0] to \mathbb{R} , h > 0, equipped with the sup norm $\|\varphi\| = \max_{-h \le \theta \le 0} |\varphi(\theta)|$. In the present work, we consider scalar functional differential equations (FDEs)

$$\dot{x}(t) = f(t, x_t), \quad t \ge 0,$$
(1.1)

where $f: [0, \infty) \times C \to \mathbb{R}$ is continuous. As usual, x_t denotes the function in C defined by $x_t(\theta) = x(t+\theta), -h \leq \theta \leq 0$. Clearly, the requirement of f continuous can be weakened (see [5, Chapter 2]); however, existence and continuity of solutions for (1.1) must be assumed.

Our research is mainly motivated by the applications of the so-called 3/2 stability results (see e.g. [6, Section 4.5]) to scalar population models which can be written in the form

$$\dot{x}(t) = (1 + x(t))F(t, x_t), \quad t \ge 0.$$
 (1.2)

²⁰⁰⁰ Mathematics Subject Classification. 34K20, 34K25.

 $Key\ words\ and\ phrases.$ delayed population model, global attractivity, Yorke condition, 3/2-condition.