ÍNDICE

1. RESUMEN	1
2. INTRODUCCIÓN	3
3. OBJETIVOS	5
3.1 Objetivo general	5
3.2 Objetivos específicos	5
4. REVISIÓN BIBLIOGRÁFICA	6
4.1 Aterosclerosis	6
4.1.1 Antecedentes generales de las arterias	6
4.1.2 Disfunción endotelial	7
4.2 ICAM-I	12
4.2.1 Características generales	12
4.2.2 Participación de ICAM-I en aterogénesis	15
4.2.3 Principales interacciones	17
4.3 Métodos de estudio de ICAM-I	18
4.3.1 Inmunohistoquímica	19
5. MATERIALES Y MÉTODOS	22
5.1 Materiales	22
5.1.1 Equipamiento	22
5.1.2 Reactivos	23

ii

5.1.3 Sistemas de detección utilizados	24
5.2 Métodos	25
5.2.1 Origen de las arterias	25
5.2.2 Procesamiento de la muestra	26
5.2.2.1 Deshidratación	26
5.2.2.2 Inclusión	27
5.2.2.3 Cortes histológicos	28
5.2.2.4 Silanización de portaobjetos	29
5.2.2.5 Desparafinación e hidratación	29
5.2.2.6 Recuperación de antígenos	30
5.2.3 Estandarización de inmunohistoquímica por la técnica	
ABC-Peroxidasa para ICAM-I	32
5.2.3.1 Inhibición de peroxidasa endógena	34
5.2.3.2 Bloqueo de reactividad específica	35
5.2.3.3 Anticuerpo primario	35
5.2.3.4 Anticuerpo secundario	36
5.2.3.5 Streptavidina-Peroxidasa	36
5.2.3.6 Revelado con diaminobenzidina tetrahidroclorhidrica	
(DAB)	37
5.2.3.7 Contraste con hematoxilina de Harris	37
5.2.3.8 Deshidratación	38
5.2.3.9 Montaje de los portaobjetos	38
5.2.3.10 Lectura e interpretación	39
6. RESULTADOS	40
6.1 Estandarización de la técnica inmunohistoquímica para el estudio de	
ICAM-I en cortes de amígdala palatina	40
6.1.1 Dilución del anticuerpo primario	41
6.1.2 Control para estandarización	45
6.2 Inmunohistoquímica en arterias sanas y con proceso aterosclerótico	46

iii

	6.2.1 Arteria aorta humana sana	46
	6.2.2 Arteria poplítea humana con placa ateromarosa	48
	6.2.3 Arteria carótida humana con placa ateromatosa	50
	6.2.4 Controles para inmunohistoquímica en arterias humanas	52
7. DISCUSIÓ	N	54
8. CONCLUS	SIONES	59
9. REFEREN	CIAS	60

ÍNDICE DE FIGURAS

FIGURA1 Corte histológico transversal de una arteria aorta.	7
FIGURA 2 Tinción hematoxilina-eosina para arterias coronarias humanas con diferentes tipos de lesión aterosclerótica.	8
FIGURA 3 Esquema de la composición de una placa aterotrombótica con los posibles marcadores moleculares.	9
FIGURA 4 Activación de moléculas de adhesión en la superficie endotelial por la acción de diferentes citoquinas.	11
FIGURA 5 Estructura de ICAM-I con su zona de unión de LFA-1.	12
FIGURA 6 Estructura y regulación del promotor de ICAM-I.	13
FIGURA 7 Esquema de la interacción entre ICAM-I y LFA-1 ante estímulos inflamatorios.	18
FIGURA 8 Procedimiento de deshidratación de un corte histológico.	27
FIGURA 9 Proceso de corte y fijación del tejido embebido en parafina.	28
FIGURA 10 Procedimiento de desparafinación e hidratación de un corte histológico.	30
FIGURA 11 Recuperación de antígenos.	32 v

FIGURA 12 Conformación de los grupos de estudio para la estandarización	
de la inmunohistoquímica.	34
FIGURA 13 Adición del anticuerpo primario sobre el tejido y lavado posterior.	36
FIGURA 14 Preparación del cromógeno.	37
	20
FIGURA 15 Procedimiento de deshidratación de un corte histológico.	38
FIGURA 16 Montaie de los portaobietos en medio resinoso	39
	0,2
FIGURA 17 Cortes de amígdala palatina con tinción hematoxilina-eosina.	41
FIGURA 18 Cortes de amígdalas en aumento 10X incubadas a una dilución de	
anticuerpo primario 1/10.	42
FIGURA 19 Cortes de amigdalas en aumento 10X incubadas a una dilución de	12
anticuerpo primario 1/25.	43
FIGURA 20 Cortes de amígdalas en aumento 10X incubadas a una dilución de	
anticuerpo primario 1/50.	44
FIGURA 21 Cortes de amígdalas en aumento 10X incubadas a una dilución de	
anticuerpo primario 1/100.	45
rigura 22 Controles negativos de amigdala utilizados en estandarización de	16
	40
FIGURA 23 Tinción hematoxilina-eosina en arteria humana sana.	47

FIGURA 24	Tinción inmunohistoquímica negativa para ICAM-I en arteria	
humana sana		47
FIGURA 25	Tinción hematoxilina-eosina en cortes de arteria poplítea.	49
FIGURA 26	Tinción inmunohistoquímica positiva para ICAM-I en arteria	
poplítea con	placa de ateroma.	50
FIGURA 27	Tinción hematoxilina-eosina en placa de ateroma de arteria carótida.	51
FIGURA 28	Tinción inmunohistoquímica de arteria carótida con positividad para	
ICAM-I por J	proceso ateromatoso.	52
FIGURA 29 humanas.	Controles negativos utilizados en la inmunohistoquímica de arterias	53
FIGURA 30 humanas.	Control positivo utilizado en la inmunohistoquímica de arterias	54

ÍNDICE DE TABLAS

TABLA 1Células donde se expresa ICAM-I y moléculas que inducen esta expresión.14