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Abstract: Seventeen diterpenes belonging to the labdane, abietane and isopimarane 

skeleton classes were isolated from the resin of the Chilean gymnosperm Austrocedrus 

chilensis and identified by spectroscopic and spectrometric methods. The diterpene  

12-oxo-labda-8(17),13E-dien-19 oic acid is reported for the first time as a natural product 

and 14 diterpenes are reported for the first time for the species. 
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1. Introduction 

The gymnosperm tree Austrocedrus chilensis (D. Don) Florin et Boutelje (Syn.: Austrocedrus 

chilensis (D.Don) Pic. Ser. et Bizz) (Cupressaceae) is known as “ciprés de cordillera” and grows in 

sandy soils in the Eastern Andean slopes up to 2,000 m over sea level. The plant leaves has been used 

as a sudorific and the powdered fruits to treat diarrhea [1]. Little information exists on other medicinal 

uses of the plant, but the wood is highly appreciated. The monoterpene carvacrol and β-thujaplicin  

(4-isopropyl tropolone = hinokitiol) and the flavonoid taxifolin were isolated from the wood of  

A. chilensis [2]. An ethanol extract from the aerial parts of the tree, including leaves, twigs and stems, 

afforded the lignan desoxypodophyllotoxin and the diterpenes 8,20-dihydroxy-8(11),13-abietadien-12-

one and pisiferol [3-5]. Flavonoids were identified from a 70% ethanol extract of leaves and branchlets 
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of A. chilensis [6], while sugiol and another unidentified diterpene were isolated from a tree bark 

methanol extract [7]. 

However, scarce information is available on the composition of its resin. Cox et al. [8], working on 

a comparison of gymnosperm resins using hyphenated techniques, described the identification of two 

labdane/clerodane C-19 acids, sandaracopimaric acid, ferruginol, 2,3-dehydroferruginol, 6,7-dehydro-

ferruginol and 7-oxoferruginol from the external resin of A. chilensis. 

The investigation of gymnosperm resin composition has been carried out using chromatographic 

means for the isolation and further identification of the constituents by spectroscopic and 

spectrometric methods [9-11]. New techniques used to characterize the resin constituents include gas 

chromatography coupled to mass spectrometry (GC-MS) [12-15], and proton magnetic resonance 

spectroscopy [16]. 

Following our studies on native South American plants, we have now examined the composition of 

resin exudates from a mature population of Austrocedrus chilensis trees to establish suitable conditions 

for metabolic profiling. 

2. Results and Discussion 

Seventeen diterpenes with isopimarane, labdane and abietane skeletons were isolated from the resin 

of Austrocedrus chilensis, and identified by spectroscopic and spectrometric methods. Fourteen of 

these diterpenes are reported for the species for the first time. The compounds were identified by 

spectroscopic means and by comparison of their spectral data with literature values. The 13C-NMR 

data of compounds 4, 6, 12–14a is shown in Table 1. 

Table 1. 13C-NMR data of the compounds 4, 6, 12, 13 and 14a (100 MHz, CDCl3, δ-values). 

C 4 6 12 13 14a 
1 36.3 t 41.7 t 39. 5 t 39.5 t 39.5 t 
2 18.9 t 19.6 t 26.0 t 26.0 t 26.0 t 
3 35.2 t 38.6 t 38.1 t 38.1 t 38.2 t 
4 37.9 s 40.1 s 44.4 s 44.4 s 44.5 s 
5 45.5 d 55.8 d 56.5 d 56.5 d 56.2 d 
6 21.4 t 24.7 t 20.1 t 20.1 t 20.1 t 
7 35.3 t 39.3 t 38.7 t 38.7 t 38.4 t 
8 124.5 s 148.9 s 148.1 s 148.1 s 149.4 s 
9 137.2 s 57.6 d 56.6 d 56.9 d 51.1 d 

10 37.6 s 33.8 s 40.6 s 40.6 s 39.7 s 
11 18.5 t 17.9 t 23.5 t 23.5 t 33.0 t 
12 32.3 t 42.4 t 134.1 d 131.9 d 201.1 s 
13 35.2 s 73.8 s 133.6 s 131.7 s 139.1 s 
14 42.3 t 145.5 d 141.8 d 133.9 d 136.0 d 
15 146.5 d 111.8 t 110.1 t 113.4 t 14.9 q 
16 110.9 t 27.9 q 12.0 q 12.0 q 11.5 q 
17 28.1 q 106. 7 t 107.9 t 108.0 t 106.3 t 
18 72.5 t 21.9 q 29.2 q 29.2 q 29.0 q 
19 17.7 q 33.8 q 184.4 s 184.4 s 178.0 s 
20 20.1 q 14.7 q 13.0 q 13.0 q 13.3 q 

OMe - - - - 51.4 q 
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The structures of the compounds identified in the resin are shown in Figure 1. From the compounds 

identified in the present work, only sandaracopimaric acid (compound 5), ferruginol (compound 15), 

and 7-oxoferruginol (sugiol, compound 17) were previously reported [8] in a resin sample of  

this species collected in southern Chile. On the other hand, the previously reported diterpenes  

2,3-dehydroferruginol and 6,7-dehydroferruginol [8] were not identified in our samples. The 

differences can be explained due to different plant populations and collection time. 

Figure 1. Structure of the compounds isolated and/or identified from the resin of 

Austrocedrus chilensis. 
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Related diterpenes were isolated from Cryptomeria japonica, including the labdanes imbricatolic 

acid, its 15-acetoxy derivative, imbricatolic acid methyl ester, labd-8(17)-en-15,19-dioic acid dimethyl 

ester, 15-(2-oxopropylidene)labd-8(17)-en-19-oic acid, 13-epimanool, 13-epitorulosol, 19-acetoxy-
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13S-hydroxylabda-8(19),14-diene, 13-epitorulosal, 13-epicupressic acid, agathadiol, 15-acetyl-

agathadiol, 19-acetylagathadiol, 15,19-diacetylagathadiol, isoagatholal, 15-acetylisoagatholal,  

iso-cupressic acid, 15-acetylisocupressic acid, 15-oxolabda-8(17),13E-dien-19-oic acid, 7β-acetoxy-

15-hydroxylabda-8(17), 13E-dien-19 oic acid methyl ester, 14-hydroxy-15-norlabd-8(17)-en-19-oic 

acid methyl ester, 15-hydroxylabda-8(17),13Z-dien-19 oic acid methyl ester, 15,16-epoxylabda-

13(16),14-dien-8α,19-diol, 15-acetoxylabda-8,13E-dien-19 oic acid, 8α-hydroxylabda-13(16),14-dien-

19-yl p-methoxycinnamate, cryptomeridiol-4-yl-19-acetoxylabda-8(19),13E-dien-19-oate [17]. In a 

new article, additional labdanes, abietanes and pimaranes were identified, including junicedric acid, 

13-epi-cupressic acid methyl ester, copalol, 13-oxo-14,15-dinorlabd-8(17)-en-19 oic acid methyl  

ester, trans-communic acid, cis-communic acid, 19-acetoxyferruginol, sugiol methyl ether,  

6α-hydroxydemethyl-cryptojaponol, 5,6-dehydrosugiol methyl ether, cupresol, nejukol, isopimarinol 

and isopimaric acid [18]. 

The compound 14 was isolated as the corresponding methyl ester and is described as a new natural 

product. The structure of compound 14 follows from the HR-MS indicating a molecular formula 

C20H30O3 and C21H32O3 after methylation (compound 14a), accounting for six degrees of unsaturation  

(i.e., three double bonds, two rings and one carbonyl function). The IR spectrum of the methyl ester 

shows an ester function and α,β-unsaturated ketone at 1,724 and 1,672 cm−1, respectively. In the  
1H-NMR spectrum, an olefinic side chain proton at δ 6.77 (H-14) coupled with two allyl methyl 

groups at δ 1.84 (H-15) and 1.74 ppm (H-16), indicates an α,β-unsaturated ketone system in the side 

chain of the diterpene. The E-configuration of the side chain double bond follows from the chemical 

shift of the olefinic proton and the C-15 methyl group and is in agreement with the data reported for 

related diterpenes isolated from the liverwort Scapania undulata [19]. 

The pair of dd at δ 2.94 (17.5, 10.9) and δ 2.50 (17.5, 3) ppm (H-11) places the ketone at C-12. An 

exo methylene (δ 4.67, s, H-17 and δ 4.23, s, H-17′), a methoxy group at δ 3.60 and two quaternary 

methyl groups appears as singlets at δ 1.18 (H-18) and 0.54 ppm (H-20), respectively, indicating that 

the diterpene has a labdane skeleton. The 1H-NMR data of compound 14 are summarized in the 

Experimental section. The 13C-NMR spectrum is in agreement with the proposed structure. Related 

compounds with a hydroxy function at C-15 were reported from Chloranthus henryi including 

henrilabdane A and the 13-oxo derivative henrilabdane C [20] and 12,13RS-dihydroxycommunic acid 

from Platycladus orientalis [21]. 

The methylated resin samples (200–240 mg) from a female (A) and a male tree (B) were separately 

loaded on preparative TLC plates (SiO2, PE-EtOAc 85:15). After visualization under UV light, the 

different elution bands were comparatively analyzed by 1H-NMR and GC-MS. The GC traces of the 

resin samples is shown in Figure 2. Fraction 1 (Rf 0.75) showed a mixture of compounds 5a, 12a and 

13a. Fraction 2 (Rf 0.62–0.70) contained compounds 1, 5a, 12a, 13a, 15 and 16a. Fraction 3  

(Rf 0.50–0.62) yielded compounds 11, 15 and 14a. Fraction 4 showed a main spot (Rf 0.38) and a 

second spot (Rf 0.50), the constituents were identified as compounds 6 and 4. Fraction 5 contained a 

minor constituent with Rf 0.38 and a main spot with Rf 0.30 identified as compounds 9, 10a and 4 as 

minor constituents. 
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Figure 2. GC trace of the Austrocedrus chilensis resin (as methyl esters). Compounds  

were identified by comparison with standards isolated from the resin and comparison of 

the mass fragmentation patterns with literature. Compounds: 1: 18-hydroxy isopimar-15-

ene; 4: Isopimara-8(9),15-dien-19-ol; 5a: Sandaracopimaric acid methyl ester;  

9: Torulosal; 10a: Torulosic acid methyl ester; 11: 8(17),12,14-labdatriene; 12a:  

E-communic acid methyl ester; 13a: Z-communic acid methyl ester; 14a: 12-oxo-labda-

8(17),13E-dien-19 oic acid methyl ester; 15: Ferruginol; 16a: Dehydroabietic acid methyl 

ester. For compounds 6, 9 and 10, M+-water was detected instead of the molecular ion. The 

resin sample A was obtained from a female tree while the sample B was taken from a male 

tree from the same population. Both samples were collected in November 2010. For 

compound structures please see Figure 1. 
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The compounds isolated and identified from the A. chilensis resin are constituents occurring in 

several gymnosperms and in the Cupressaceae family. The C-13 epimer of compound 3 was 

previously described in a study of cationic rearrangements and cyclizations of diterpenes [22] as well 

as from Phoma betae [23]. Compound 4 was identified as 8,15-isopimaradien-19-ol and shows clear 

differences with the ent-isopimaranes isolated from Calceolaria polifolia [24] and C. latifolia [25]. 

Sandaracopimaric acid (5) as well as several abietanes were isolated from the endemic species Taxus 

mairei occurring in Taiwan [26], Juniperus chinensis [27] and other gymnosperms [5]. 8(17),14-

Labdadien-13-ol (6) was previously reported from Cupressus sempervirens, C. torulosa, Tetraclinis 

articulate, Vitex rotundifolia [5], Cupressus dupreziana and C. sempervirens [11]. The 13C-NMR data 

of compound 6 agree with that reported for epimanool derivatives [17]. Compounds 6–10 were 

described as constituents of Cryptomeria japonica leaves [18]. Torulosal (9) has also been previously 

isolated from Cupressus torulosa, Araucaria cooki, Tetraclinis articulate and Dacrydium biforme [5]. 

The communic acid isomers (compounds 12 and 13) has been reported from several Cupressaceae, 

including Juniperus chinensis [27] and ferruginol (15) has been found in several Podocarpaceae and 

gymnosperms [28]. Dehydroabietic acid 16 is a common constituent in resins from gymnosperms and 

7-oxoferruginol (sugiol, compound 17) was identified [8] from a Chilean resin sample of A. chilensis. 

Overall, the diterpene composition of the South American Cupressaceae Austrocedrus chilensis 

shares similarities with Juniperus and Cryptomeria species, including the occurrence of E- and  

Z-communic acid, sandaracopimaric acid, ferruginol and several labdane and pimarane diterpenes [27,17]. 

Labdane diterpenes have been reported from other Cupressaceae including Platycladus orientalis [29], 

while Juniperus brevifolia afforded sandaracopimaranes and abietanes [30]. Juniperus phoenicea and 

J. thurifera var. africana yielded several abietane and pimarane derivatives [31]. Labdanes and 

pimarane acids have been isolated from Juniperus thurifera [9,10]. 

Several of the diterpenes occurring in the A. chilensis resin have been found to display relevant 

biological activities in different in vitro as well as in in vivo systems. Communic acid has been 

reported as a selective COX-2 enzyme inhibitor from Curcuma mangga [32] and antimycobacterial 

compound in Juniperus communis [33]. Ferruginol present gastroprotective and cytotoxic activity [34,35], 

antiproliferative [36], anti-staphylococcal [37] and antiplasmodial effect [38], among others. The 

related diterpene 7-oxoferruginol was associated with the anti-inflammatory and hepatoprotective 

effect of Cryptomeria japonica [39]. Dehydroabietic acid and its derivatives present gastroprotective 

effect in animal models of induced gastric ulcers [40]. The abietane diterpenes 20-hydroxyferruginol 

and 6α-hydroxysugiol from the cones of Sequoia sempervirens, have been shown to present 

antitumour effect in oncogenic H-ras transformed cells and also against the following human tumor 

cell lines: colon (SW620 and HCT116), breast (MDA-MB-231) and lung (NCI-H23 and A 549) [41]. 

Labdane diterpenes from Thuja standishii stem bark including 6α-hydroxysugiol, 12S-hydroxylabda-

8(17), 13(16),14-trien-19-oic acid, 12-methoxyabieta-8,11,13-trien-11-ol and 15-oxolabda-8(17),11Z,13E-

trien-19 oic acid displayed inhibitory effects as potential cancer chemopreventive agents [42]. 

While the composition of resin samples from a female and a male tree showed the same main 

compounds, the relative ratio of the diterpenes was different. This fact can be related to several factors, 

including gender, individual, seasonal, or response to pathogens, among others. However, a much 

larger number of samples should be analyzed to disclose the significance of the present findings. The 

establishment of a chromatographic method for the fast and reliable identification of the resin 



Molecules 2011, 16 10659 

 

 

constituents opens new possibilities for the comparative study of populations of this tree as well as the 

response of A. chilensis to environmental stress and microorganisms [43-46], including the pathogenic 

fungus Phytophthora austrocedrae. 

3. Experimental 

3.1. General 

Optical rotations were obtained for solutions in CHCl3 (concentrations expressed in g/100 mL) on a 

Jasco DIP 370 polarimeter (Jasco Analytical Instruments, Easton, MD, USA). IR spectra were 

recorded on a Nicolet Nexus FT-IR instrument (Thermo Electron Corporation, Waltham, MA, USA). 

All NMR experiments were performed on a Bruker Avance 400 NMR spectrometer (Bruker BioSpin 

GmbH, Rheinstetten, Germany) equipped with a 5 mm inverse detection z-gradient probe. The 1H and 
13C spectra (at 400 and 100 MHz, respectively) were measured at room temperature (22–23 °C) using 

CDCl3 as solvent. Chemical shifts are given on the  scale and were referenced to residual CHCl3  

at 7.25 ppm for 1H spectra and to the solvent at 77.00 ppm for 13C spectra. One-dimensional 1H and  
13C-NMR spectra were acquired under standard conditions. The pulse programs of the COSY, 

gHSQC, gHMBC experiments were taken from the Bruker software library. Homonuclear two-

dimensional spectra (COSY) and inverse proton-detected heteronuclear two-dimensional spectra 

(gHSQC) were acquired in the phase-sensitive mode and gHMBC spectra were acquired in the 

absolute value mode. The data for the gHSQC spectra were collected in a 1024 × 256 matrix with a 

spectral width of 4,000 Hz in the proton domain and 20,000 Hz in the carbon domain and processed in 

a 1024 × 512 matrix. The gHSQC experiments were optimized for a one-bond heteronuclear coupling 

constant of 145 Hz. The gHMBC experiments were optimized for long-range coupling constants of 

7.96 Hz. 2D-NOESY experiments were acquired with a mixing time of 500 ms, a recycle delay of 1 s 

and 128–256 transients per spectrum. Coupling constants J values are presented in Hz. HR-MS were 

measured with an VG Autospec Trisector EBE (Micromass Instruments S.A., Madrid, Spain) 

spectrometer operating at 70 eV and are presented as m/z (rel. int. %). Silica gel 60 (Merck, 63–200 µm 

particle size) was used for column chromatography, precoated silica gel plates (Merck, Kieselgel 60 

F254, 0.25 mm) were used for thin layer chromatography (TLC). TLC spots were visualized by 

spraying the chromatograms with p-anisaldehyde-ethanol-acetic acid-H2SO4 (2:170:20:10 v/v) and 

heating at 110 °C for 3 min. 

3.2. GC-MS Analysis 

Equipment: Perkin Elmer Turbo Mass (Perkin-Elmer Corporation, Norwalk, CT, USA). Column: 

fused silica capillary column, SP-2330 (Supelco), 30 m × 0.25 μm. Carrier: He, split flow 50.0 mL/min, 

initial setpoint: 20.0 PSIG. Oven program: total run time: 66 min, initial temperature: 100 °C, initial 

hold: 1.00 min, Ramp: 10.0 °C/min to 250 °C, hold for 50.00 min. Injection volumen: 1 μL. 

Compounds were characterized by electron-ionization (EI) mass spectra. Retention time (Rt, min) and 

MS fragmentation patterns of the known compounds were compared with literature. 
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3.3. Plant Material 

The resin of Austrocedrus chilensis was collected from a mature tree population growing at Las 

Trancas, VIII Region, Chile (36°54′03′′S, 31°32′47′′W). Voucher herbarium specimens have been 

deposited at the Herbario de la Universidad de Talca and were identified by Patricio Peñailillo. The 

voucher specimens correspond to the individuals from those the resin was obtained. For the 

phytochemical study, resin was collected in February 2009 while for GC-MS analysis, samples were 

obtained on November 2010. For the composition analysis and isolation of the diterpene constituents, 

samples were randomly collected from adult trees of either gender. Naturally exuding resin drops were 

manually collected and stored in glass containers for analysis. For the GC-MS analyses, part of the 

resin was dissolved in diethyl ether and then treated with diazomethane in diethyl ether to obtain the 

corresponding methyl esters. The resin drop samples as collected were dissolved in CDCl3 for  
1H-NMR analysis and comparison with the results obtained using GC-MS. Two resin samples (A and B) 

collected on November 01, 2010 were worked-up after methylation to compare the GC-MS patterns 

with the 1H-NMR spectra, allowing identity confirmation of all main constituents. 

3.4. Isolation of the Resin Constituents 

The crude resin (362 g) was extracted with a 1:1 dichloromethane (DCM)-ethyl acetate (EtOAc) 

mixture. Some 110.58 g of solubles were obtained. The resin was adsorbed on silica gel and submitted 

to flash chromatography with a petroleum ether (PE)/ethyl acetate (EtOAc) gradient (PE/EtOAc 95:5, 

90:10, 80:20, 70:30, 60:40, 50:50 0:100). The volumen of each fraction was 1 L. After TLC analysis 

(SiO2, PE/DCM 1:1 and PE/EtOAc 9:1), fractions with similar patterns were pooled as follows: 1  

(280 mg), 2 (20 mg), 3 (7 g), 4 (16 g), 5 (17.5 g), 6 (12 g), 7 (11 g) and 8 (15 g) (total: 78.8 g). 

Fractions 1 and 2 containing mainly non-polar compounds were submitted to GC-MS. The GC-MS 

chromatogram of both fractions showed a main compound, identified as 3 according to the MS 

fragmentation pattern (NIST database) and interpretation of the spectra, with 4 as a second product. 

The GC-MS profile of fractions 3 and 4 presented a main constituent identified as 8(17),  

12,14-labdatriene (11), the alcohol 1 and the compound 3. Fractions 5, 6 and 7 differed only in the 

relative proportion of constituents. Part of the fraction 6 (12 g) was permeated on a Sephadex LH-20 

column (column length 125 cm, Sephadex content 60 cm, i.d. 5 cm) with a PE/DCM/MeOH 1:1:1 

mixture in two batches (2 × 6 g each). Some 32 fractions of 20 mL each were collected and pooled 

together according to the TLC patterns (SiO2, PE/EtOAc 8:2). Fractions 1–10 did not contained 

compounds of interest and were discarded. The pool of fractions 11–14 (1.67 g) was chromatographed 

on a silica gel column (190 g silica gel, 70 cm length, 4 cm i.d.) with a PE/EtOAc 8:2 mixture. Some 

44 fractions of 25 mL each were collected and grouped after TLC analysis as follows: 1–2 (discarded), 

3–5 (319 mg) with manool (6) as the main constituent and the acetate 2 as a minor compound, 6–7  

(42 mg manool 6), 8–9 (32 mg isopimara-8(9),15-dien-19-ol, 4), 10–21 (350 mg) and 22–43 (638 mg, 

complex mixture). The fraction pool 10–21 afforded after preparative TLC on silica gel  

(toluene/EtOAc 9:1) 64 mg of a mixture of 18-acetoxymanool (8) and torulosal (9). 

The fraction pool 15–19 (1.92 g) was chromatographed on a RP-8 silica gel column with  

MeOH/H2O 9:1 as the mobile phase in three batches. Some 90 fractions of 5 mL each were collected 

and pooled after TLC to afford a mixture of E-communic acid (main compound) and Z-communic acid 
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(compounds 12 and 13) in a 3:1 ratio (350 mg) and sandaracopimaric acid (90 mg, 5). A representative 

sample of the fractions 1–32 (136 mg) was treated with diazomethane. After preparative TLC (silica 

gel, PE/EtOAc/acetone 9:2:1) 51 mg of torulosic acid methyl ester (10a) and 33 mg of a mixture of 

torulosic acid methyl ester (10a) and the alcohol 7 were obtained. After methylation, preparative TLC 

of fraction pool 20–23 (toluene/DCM/Et2O 4.5:4.5:1) yielded 12.3 mg of compound 14a and 13 mg of 

a mixture of the compounds 6 and 7 in a 4:1 ratio. 

Figure 3. Flow chart summarizing the isolation of constituents from Austrocedrus chilensis resin. 

 

Some 4.06 g of fraction 8 were permeated on a Sephadex LH-20 column (125 cm length, 5 cm i.d., 

60 cm Sephadex filling), with a PE:DCM:MeOH 1:1:1 mixture. Some 34 fractions of 20 mL each were 

collected and pooled according to the TLC patterns to afford after additional CC on silica gel,  

10 mg of the acetate 2 with traces of the corresponding aldehyde, 2.5 mg manool (6) and 15.6 mg of 

the acetate 8 with traces of torulosal (9), torulosic acid (10, 362 mg) and traces of 7-oxoferruginol 

(sugiol, 17). The isolation of the compounds is summarized in Figure 3. 

3.5. Compound Characterization 

18-Hydroxyisopimar-15-ene (1). GC-MS: Rt 14.98 min; C20H34O (290); m/z 290 (11), 275 (34), 257 

(40), 179 (20), 137 (41), 109 (65), 95 (66), 81 (79), 69 (84), 55 (100). 

18-Acetoxyisopimar-15-ene (2). [α]D
20: +82.7 (c 0.10, CHCl3); IR vmax (film) 2928, 2864, 1736, 1461, 

1378, 1242. GC-MS: Rt 16.33 min; C22H34O2 (330); m/z 330 (9), 315 (7), 288 (6), 270 (9), 255 (70), 

187 (30), 105 (47), 91 (53), 43 (100). 

Isopimara-8(9),15-diene (3). GC-MS: Rt 14.13 min; C20H32 (272); m/z 272 (11), 257 (34), 137 (53), 

107 (53), 95 (89), 81 (100), 69 (91), 55 (89). 
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Isopimara-8(9),15-dien-19-ol (4). [α]D
20: +58.8 (c 0.32, CHCl3); IR vmax (film): 3402, 3079, 2928, 

1716, 1637, 1449, 903, 756; 1H-NMR: δ 5.72 (dd, J = 17.5 Hz and 10.8 Hz, 2H, H-15); 4.87 (dd,  

J = 10.8 Hz and 1.4 Hz, 1H, H-16) and 4.83 (dd, J = 17.5 Hz and 1.4 Hz, 1H, H-16′); 3.42 (d, J = 10.9 Hz, 

1H, H-19) and 3.14 (d J = 10.9 Hz, 1H, H-19′); 0.97 s (3H, H-17); 0.94 s (3H, H-18); 0.78 s (3H,  

H-20); GC-MS: Rt 15.77-15.83 min; C20H32O (288); m/z 288 (21), 273 (43), 257 (61), 187 (39), 161 

(49), 119 (58), 105 (91), 91 (100), 81 (78), 55 (85). 

Sandaracopimaric acid (5). [α]D
20: +16.9 (c 0.21, CHCl3); IR vmax (film): 3387, 2926, 1691, 1457, 760; 

1H-NMR: δ 5.75 (dd, J = 17.4 Hz and 10.6 Hz, 1H, H-15); 5.20 (s, 1H, H-14); 4.88 (dd, J = 17.5 Hz 

and 1.4 Hz, 1H, H-16) and 4.85 (dd, J = 10.8 Hz and 1.4 Hz, 1H, H-16′); 1.18 (s, 3H, H-18); 1.02 (s, 

3H, H-17); 0.81 (s, 3H, H-20). 

Sandaracopimaric acid methyl ester (5a). GC-MS: Rt 16.15 min; C21H32O2 (316); m/z 316 (3), 301 

(10), 257 (10), 180 (10), 121 (100). 

Labda-8(17),14-dien-13-ol (manool, 6). [α]D
20: +66.4 (c 0.42, CHCl3); IR vmax (film): 3458, 3075, 

2928, 2864, 2836, 1457, 1382, 1234, 907; 1H-NMR: δ 5.89 (dd, J = 17.4 Hz and 10.8 Hz, 1H, H-14); 

5.18 (dd, J = 17.4 Hz and 1 Hz, 1H, H-15) and 5.03 (dd, J = 10.8 Hz and 1 Hz, 1H, H-15′); 4.79 (d,  

J = 1 Hz, 1H, H-17) and 4.49 (br s, 1H, H-17′); 1.25 (s, 3H, H-16); 0.84 (s, 3H, H-19); 0.77 (s, 3H,  

H-18); 0.65 (s, 3H, H-20); GC-MS: Rt 14.19 min, 272 (M+-H2O) (11), 257 (34), 137 (53), 95 (87), 81 

(100), 55 (73). 

18-Hydroxymanool (7). 1H-NMR: δ 5.73 (dd, J = 17.4 Hz and 10.7 Hz, 1H, H-14); 4.86 (dd, J = 10.7 Hz, 

1.2 Hz, 1H, H-15) and 4.82 (dd, J = 17.4 Hz and 1.2 Hz, 1H, H-15′); 4.79 (s, 1H, H-17) and 4.49 (s, 

1H, H-17′); 3.41 (d, J = 10.9 Hz, 1 H, H-19) and 3.14 (d, J = 10.9 Hz, 1H, H-19′); 1.25 (s, 3H,  

H-16); 0.94 (s, 3H, H-18); 0.84 (s, 3H, H-20). 

18-Acetoxymanool (8). 1H-NMR: δ 5.86 (ddd, J = 17.4 Hz, 10.8 Hz and 1.1 Hz, 1 H, H-14); 5.15 (dd,  

J = 17.4 Hz and 1.1 Hz, 1H, H-15) and 5.01 (br d, J = 10.8 Hz, 1H, H-15); 4.78 (d, J = 1 Hz, 1H,  

H-17) and 4.49 s (1H, H-17′); 4.17 (d, J = 11 Hz, 1H, H-19) and 3.80 (d, J = 11 Hz, 1H, H-19′); 1.99 

(s, 3H, OAc); 1.23 (s, 3H, H-16); 0.91 (s, 3H, H-18); 0.64 (s, 3H, H-20); EI-MS: C22H36O3 (348) 330 

(0.5) (M+-18), 270 (3), 255 (10), 189 (10), 147 (16), 135 (38), 93 (37), 79 (44), 43 (100). 

Torulosal (9). 1H-NMR: δ 9.69 (s, 1H, H-19); 5.86 (ddd, J = 17.4 Hz, 10.8 Hz and 0.6 Hz, 1H, H-14); 

5.15 (dd, J = 17.4 Hz and 1.1 Hz, 1H, H-15) and 5.01 (br d, J = 10.7 Hz, 1H, H-15′); 4.84 (d, J = 1 Hz, 

1H, H-17) and 4.52 (s, 1H, H-17′); 1.23 (s, 3H, H-16); 0.97 (s, 3H, H-18); 0.52 (s, 3H, H-20). GC-MS: 

Rt: 16.16 min; C20H32O2 (304); m/z 286 (4) (M+-18), 257 (21), 218 (9), 189 (15), 147 (32), 133 (39), 

119 (50), 107 (62), 93 (68), 81 (100), 55 (91), 43 (99). 

Torulosic acid (10). [α]D
20: +19.1 (c 0.22, CHCl3). 

1H-NMR: δ 5.95 (dd, J = 17.3 Hz and 10.8 Hz, 1H, 

H-14); 5.23 (d, J = 17.3 Hz, 1H, H-15) and 5.08 (d, J = 10.8 Hz, 1H, H-15′); 4.87 (s, 1H, H-17) and 

4.55 (s, 1H, H-17′); 1.31 (s, 3H, H-16); 1.23 (s, 3H, H-18); 0.63 (s, 3H, H-20). 
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Torulosic acid methyl ester (10a). [α]D
20: +19.8 (c 0.50, CHCl3); GC-MS: Rt: 16.39 min; 316 (M+- 

H2O) (5), 301 (5), 257 (15), 241 (13), 121 (100), 107 (35), 93 (40), 81 (40), 55 (35). 1H-NMR: δ 5.90 

(dd, J = 17.3 Hz and 10.8 Hz, 1H, H-14); 5.21 (d, J = 17.3 Hz, 1H, H-15) and 5.05 (d, J = 10.8 Hz, 1H, 

H-15′); 4.87 (s, 1H, H-17) and 4.52 (s, 1H, H-17′); 3.63 (s, 3H, OMe); 1.25 (s, 3H, H-16); 1.18 (s, 3H, 

H-18); 0.48 (s, 3H, H-20). 

8(17),12,14-Labdatriene (11). GC-MS: Rt 14.15 min; C20H32 (272); m/z 272 (12), 257 (38), 175 (7), 

161 (18), 137 (55), 109 (54), 95 (91), 81 (100), 69 (85), 55 (89). 1H-NMR: δ 6.28 (dd, J = 17.3 Hz and 

10.8 Hz, 1H, H-14); 5.36 (t, J = 6.3 Hz, 1H, H-12); 5.00 (d, J = 17.3 Hz, 1H, H-15) and 4.84 (d,  

J = 10.8 Hz, 1H, H-15′); 4.80 (s, 1H, H-17) and 4.42 (s, 1H, H-17′); 2.37 (br d, J = 12.4 Hz, 2 H,  

H-11); 1.71 (s, 3H, H-16); 0.85 (s, 3H, H-19); 0.78 (s, 3H, H-18); 0.65 (s, 3H, H-20). 

(E)-Communic acid (12). 1H-NMR: δ 6.30 (dd, J = 17.3 Hz and 10.8 Hz, 1H, H-14); 5.39 (t, J = 6.3 Hz, 

1H, H-12); 5.02 (d, J = 17.3 Hz, 1H, H-15) and 4.86 (d, J = 10.8 Hz, 1H, H-15′); 4.82 (s, 1H,  

H-17) and 4.44 (s, 1H, H-17′); 2.38 (br d, J = 12.4 Hz, 2 H, H-11); 1.73 (s, 3H, H-16); 1.23 (s, 3H,  

H-18); 0.63 (s, 3H, H-20). 

(E)-Communic acid methyl ester (12a). [α]D
20: +37.17 (c 0.53, CHCl3); IR vmax (film): 3402, 2932, 

2844, 1692; GC-MS: Rt 16.08 min; C21H32O2 (316); m/z 316 (19), 301 (13), 257 (19), 241 (20), 175 

(53), 133 (40), 121 (100), 119 (66), 105 (56), 93 (63), 79 (73). 

(Z)-Communic acid (13). 1H-NMR: δ 6.77 (dd, J = 17.3 Hz and 10.8 Hz, 1 H, H-14); 5.26 (t, J = 6.3 Hz, 

1H, H-12); 5.15 (d, J = 17.3 Hz, 1H, H-15) and 5.06 (d, J = 10.8 Hz, 1H, H-15′); 4.82 (s, 1H,  

H-17) and 4.47 (s, 1H, H-17′); 1.75 (s, 3H, H-16); 1.23 (s, 3H, H-18); 0.63 (s, 3H, H-20). 

(Z)-Communic acid methyl ester (13a). GC-MS: Rt 15.56–15.72 min; C21H32O2 (316); m/z 316 (19), 

301 (4), 257 (8), 241 (8), 175 (20), 135 (50), 121 (100), 107 (55), 91 (56), 79 (56). 

12-Oxolabda-8(17),13E-dien-19 oic acid (14). [α]D
20: +36.3 (c 0.38, CHCl3); IR vmax (film): 3455, 

2935, 1726, 1671, 1643, 1452, 1232, 1156, 773; 1H-NMR: δ 6.77 (dq, J = 6.9 Hz and 1.1 Hz, 1H,  

H-14); 4.67 (s, 1H, H-17) and 4.23 (s, 1H, H-17′); 3.60 (s, 3H, OMe); 2.94 (dd, J = 17.5 Hz and  

10.9 Hz, 1H, H-11) and 2.50 (dd, J = 17.5 Hz and 3 Hz, 1H, H-11′); 2.15 (br d, J = 13.3 Hz, 1H, H-3); 

1.84 (dd, J = 6.9 Hz and 1.1 Hz, 3H, H-15); 1.74 (s, 3H, H-16); 1.18 (s, 3H, H-18); 0.54 (s, 3H,  

H-20); HR-MS (m/z): 318.2210. Calcd for C20H30O3: 318.2195. 

12-Oxolabda-8(17),13E-dien-19 oic acid methyl ester (14a). [α]D
20: +21.68 (c 0.14, CHCl3); IR vmax 

(film): 3426, 3075, 2936, 1724, 1672, 1154, 883. GC-MS: Rt 17.66 min; C21H32O3 (332); m/z 332 (1), 

317 (1), 272 (2), 257 (1), 234 (8), 175 (11), 159 (7), 121 (26), 83 (100), 55 (49). 

Ferruginol (15). GC-MS: Rt 16.74 min; C20H30O (286); m/z 286 (78), 271 (99), 201 (58), 189 (100), 

175 (97), 159 (28), 149 (40), 69 (99); 1H-NMR: δ 6.85 (s, 1H, H-14); 6.65 (s, 1H, H-11); 3.18 (m, 1H, 

H-15); 1.24 (d, J = 7.0 Hz, 3H, H-16); 1.20 (d, J = 7.0 Hz, 3H, H-17); 1.19 (s, 3H, H-18); 0.96 (s, 3H, 

H-19); 0.93 (s, 3H, H-20). 
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Dehydroabietic acid methyl ester (16a). GC-MS: Rt 15.52 min; C21H32O2 (316); m/z 316 (22), 301 

(22), 257 (38), 241 (100), 173 (29), 212 (61), 195 (69), 81 (72). 1H-NMR: δ 7.32 (d, J = 8.3 Hz, 1H, 

H-11); 7.15 (dd, J = 8.3 Hz and 1.7 Hz, 1H, H-12); 7.04 (d, J = 1.7 Hz, 1H, H-14); 3.80 (s, 3H, OMe); 

2.98 (m, 1H, H-15); 1.45 (s, 3H, H-18); 1.38 (d, J = 7.0 Hz, 6H, H-16 and H-17); 1.37 (s, 3H, H-20). 

7-Oxoferruginol (sugiol) (17). GC-MS: Rt 20.70 min; C20H28O2 (300); m/z 300 (70), 285 (80), 243 

(30), 215 (46), 203 (49), 69 (72), 44 (100). 

4. Conclusions 

The composition of A. chilensis resin was established by spectroscopic and spectrometric means. A 

GC-MS method was developed for the fast identification of the diterpene constituents in the resin, 

setting the conditions for new studies on the physiological response of the tree under different 

environmental stimuli. 
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