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Abstract. Uncertainty in optimization is not a new ingredient. Di-
verse models considering uncertainty have been developed over the last
40 years. In our paper we essentially discuss a particular uncertainty
model associated with combinatorial optimization problems, developed
in the 90’s and broadly studied in the past years. This approach named
minmax regret (in particular our emphasis is on the robust deviation
criteria) is different from the classical approach for handling uncer-
tainty, stochastic approach, where uncertainty is modeled by assumed
probability distributions over the space of all possible scenarios and the
objective is to find a solution with good probabilistic performance. In
the minmax regret (MMR) approach, the set of all possible scenarios
is described deterministically, and the search is for a solution that per-
forms reasonably well for all scenarios, i.e., that has the best worst-case
performance. In this paper we discuss the computational complexity
of some classic combinatorial optimization problems using MMR ap-
proach, analyze the design of several algorithms for these problems,
suggest the study of some specific research problems in this attractive
area, and also discuss some applications using this model.
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1. Introduction

Uncertainty affects many systems concerning decision making. Uncertainty is
present in production costs, prices, labor and other parameters, therefore it is con-
venient to include it as a property of the technological and business environment.
Historically, uncertainty has been considered in mathematical models for decision
making. One example is the stochastic optimization approach which recognizes
the presence of multiple scenarios that might occur in the future. As part of the
decision model, explicit information on the probability value with which these in-
stances might be realized is necessary. Therefore, the decision model will typically
generate a solution that optimizes an expected performance measure and a stochas-
tically optimal decision is achieved. The main drawback of this approach (and also
the one of the field of deterministic optimization) is its inability to recognize that
associated with every decision is a whole distribution of outcomes depending on
what data scenario is actually carried out. Thus any approach evaluating deci-
sions using only one data scenario, either the expected or the most likely, could
fail; the performance of a decision across all possible scenarios is important to
study. For more details about the progress of developed heuristics for stochastic
combinatorial optimization, see Bianchi et al. [22].

In our paper we discuss decision environments where there is a lack of complete
knowledge about the random state of nature. This condition is in the heart of
the robustness approach. Here, the idea is to produce decisions that will have a
reasonable objective value under any possible scenario for the decision model in
a pre-specified planning horizon. In this context high probability events or low
probability events are equally important because this approach is appropiate in
situations where the consideration of the worst case is critical. For example, the
design of a bridge must consider three phenomena which might behave in different
magnitudes under certain circumstances; truck and car transit, water flow and
earth tremors or even earthquakes; a critical element like this must be able to
stand the worst case magnitude of these variables.

Different minmax criterion can be used to select among robust decisions. Two
known criterion are minmax, also called absolute robust criteria, where the robust
decision is the one that minimizes the maximum across all scenarios and which
is an overly conservative criteria; and minmax regret, also called robust deviation,
which is the difference (absolute or percentage) between the cost of a solution in
a given scenario and the cost of the optimal solution for that scenario. Regret
might be considered as an opportunity loss, because it represents the difference
between the performance of a given solution, and the performance of the solution
that would have been chosen if one had known the state-of-nature a priori.

An important effort has been focalized on the use of MMR for solving real world
problems, where uncertainty represents a central feature. As example of this, in-
teresting papers were studied. Chang and Davila [25] combined the technique of
grey mathematical programming, in which all or part of the input parameters are
represented by interval numbers, with a MMR formulation for tackling a concrete
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complex solid waste management problem. The same authors, in another pa-
per [26], attacked a related problem with the use of a MIP formulation for a MMR
model. They applied a minimax regret optimization methodology for improving
solid waste management strategies in the Lower Rio Grande Valley (TX, USA) in
accordance with a variety of cost and benefit dimensions associated with expan-
sion or construction interests in the solid waste management system. Loulou and
Kanudia, in [48], use a MMR formulation for a large scale problem related to the
definition of strategies for greenhouse gas abatement in Canada, and interesting
results were obtained when the MMR solutions were compared with a stochastic
formulation for the same problem. Kazakci et al. [46] developed an hybrid model,
containing interval linear programming (ILP) and MMR criteria for managing the
surface allocation in farms destined for biofuel production in France, in this appli-
cation diverse factors were considered affected by uncertainty, such as for example,
crop yields, agricultural policy decisions, climatic risks and energy demand, among
others.

It is important to note that for an environment of uncertainty like the one
considered here, there are other models besides minmax and minmax regret. A
first important example is the Bertsimas and Sim approach [20,21] developed for
general combinatorial optimization (CO) problems, which represents an interesting
perspective both in formulation and algorithmic development. A second example
is a deterministic risk management model [27–29], in this formulation the behavior
of the decision maker influences the robustness of the solution and it is essentially
focused on shortest path problem and minimum spanning tree. A third example
is presented by Hites et al. [40], where they discuss the applicability of classic
multicriteria concepts to the robustness framework including the MMR model.
Another example is a parameter space-based approach [39], that is an interesting
alternative for handling uncertainty especially for facility location problems due
the concepts behind the optimality criteria. Finally, in [9] a two-stage model with
MILP formulation, including data uncertainty and MMR criteria is presented and
an algorithm is proposed which efficiently identifies the robust first-stage decisions
under robust deviation of the two-stage MILP formulated problem.

Data uncertainty can be structured using discrete scenarios or interval data on
the problem parameters. The use of discrete scenarios allows better representation
of environment-specific knowledge but interval data can simplify the data collec-
tion and even the analysis process (leading to models with stronger structural
properties).

A review of some robust combinatorial problems is presented in this paper
by using robust deviation criteria and interval data. Some general results are
shown for a class of known problems including minimum spanning tree (MST)
and shortest path (SP). Algorithnic development is discussed for MST and other
important problems such as traveling salesman problem (TSP) and assignment
problem (AP).

The paper is organized as follows. In Section 2, notation and problem statement
are presented, then a very important structural property is discussed an finally a
general mixed integer linear programming formulation is described. In Section 3,
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we discuss the computational complexity of some classic CO problems in their
robust versions. In Section 4 we discuss exact algorithms and heuristics for solving
some important interval data minmax regret problems. Finally, in Section 5, we
propose some avenues for future work and conclusions.

2. Definitions and a fundamental property

2.1. Definitions

The following notation is from Averbakh and Lebedev [17]. First of all, we
define a generic CO problem.

CO Problem: Let Φ be a finite set of feasible solutions and F a function defined
on Φ with the property that the optimum value of the problem: min {F (X) :X∈Φ},
always exists.

Suppose that there is uncertainty in the objective function such that it is only
known that F is a member of a family of functions {FS(·), S ∈ Γ} for some set of
scenarios. The set Φ is scenario-independent. Let F ∗

S denote the optimum value
for the following problem:

OPT(s) Problem: min {FS(X) : X ∈ Φ}. We note that this problem, for any
scenario S ∈ Γ is reduced to solve a classic CO Problem.

For any X ∈ Φ and S ∈ Γ, the function R(S, X) = FS(X) − F ∗
S is called the

regret for X under scenario S. For any X ∈ Φ, the function Z is defined by:

Z(X) = max {R(S, X) : s ∈ Γ} , (2.1)
and is the worst-case regret for X and an optimal scenario S∗ producing such
a worst-case regret is called worst-case scenario for X . It is easy to note that
Z(X) ≥ 0, ∀X ∈ Φ.

The minmax regret version of the CO problem is:

MMR− COProblem : Z∗ = min {Z(X) : X ∈ Φ} . (2.2)

Note: This MMR version of the robust CO problem is also known as a robust
deviation problem. Another MMR version of robust CO problems is known as
relative regret and some results are studied in the paper by Averbakh [13].

In MMR-CO problems, we assume that each scenario s can be considered as
a vector in Rm, where m is the number of uncertain parameters in the problem.
Traditionally, there are two ways to represent uncertainty: the discrete scenario
case where Γ is finite and described by explicitly listing all vectors s ∈ Γ, and
the interval data case where, for each numerical parameter, only lower and upper
bounds for the value of this parameter are known, and the parameter can take on
any value between these bounds, regardless of values taken by other parameters.
Thus, in this case, Γ is the Cartesian product of the intervals of uncertainty for
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the parameters. Intuitively speaking, a scenario can be seen as a snapshot of the
problem situation [54].

We give special emphasis to MMR-CO problems where the set of scenarios
Γ is defined by real intervals (MMR-CO problem with interval data) but some
discussion about complexity issues including finite scenarios is also carried out.

A class of problems discussed here come from network optimization and, for
this reason, special notation is given to represent uncertainty. Let G = (V, E)
be an undirected (directed) connected graph with V being the set of nodes and
E being the set of edges (arcs), |V | = n, |E| = m. Suppose that for every edge
(arc) e ∈ E, its cost belongs to a real interval [c−e , c+

e ], and there is complete
independence between the cost (or length) values taken by any pair of different
edges (arcs). The set of scenarios Γ is the Cartesian product of the intervals of
uncertainty [c−e , c+

e ] , e ∈ E.
In the case of problems where other parameters might include uncertainty, such

as facility location problems where vertex weight and edge (arc) length could be
represented as intervals, we can consider only one set of scenarios containing all
the possible ocurrence of weight and length values as in [16], or we can consider
different sets of scenarios, one for each parameter.

2.2. A Fundamental property for maximal regret

For a MMR-CO problem with interval data we consider E = {e1, e2, . . . , en} be
a finite ground set and Φ is the set of feasible solutions. For every element e ∈ E
there is a closed interval [c−e , c+

e ] , c−e ≥ 0, ∀e ∈ E. A particular realization of the
costs S = (cS

e )e∈E , ∀e ∈ E is a scenario. Then, Γ = ×e∈E [c−e , c+
e ].

Some special scenarios are important. Two extremes scenarios in which all the
costs take the extreme values c−e or c+

e are utilized oftenly. If A ⊆ E we will denote
S+

A the scenario in which the elements e ∈ A have weights c+
e and all the other

elements have weights c−e . The scenario S−
A is defined analogously.

Proposition 2.1. [42] The scenario S+
X is the worst case scenario for solution

X.

From the above proposition we note it is possible to express the maximal regret
of a given solution X as follows:

Z(X) = FS+
X

(X) − F ∗
S+

X

. (2.3)

From this formula for Z(X) it is important to note that if the underlying deter-
ministic CO problem is polynomially solvable, then the maximal regret of a given
solution X can be computed in polynomial time since F ∗

S+
X

can be computed in
polynomial time.

2.3. A general MIP for MMR-CO problems with interval data

We present now a general approach for solving MMR-CO problems based on a
mixed integer programming formulation (MIP) [42]. Under some assumptions it
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is possible to formulate a MIP model with linear constraints and linear objective
function for MIP. One remarkable characteristic of this model is that it involves a
polynomial number of variables and constraints, and thus it would be possible to
solve it with a commercial package.

A binary variable xi ∈ {0, 1} ∀ei ∈ E is defined saying whether element ei is a
part of the constructed optimal solution. A characteristic vector of a given subset
of elements A ⊆ E is a binary vector x = (xi)n

i=1 such that xi = 1 if and only if
ei ∈ A. Let us associate with the set of feasible solutions Φ a set of binary vectors
ch(Φ) ⊆ {0, 1}n, which satisfies two conditions

(1) if x is a characteristic vector of a feasible solution X ∈ Φ then x ∈ ch(Φ),
and

(2) if y is a characteristic vector of a subset Y ⊆ E and y ∈ ch(Φ) then there
exists X ⊆ Y such that X ∈ Φ.

Then ch(Φ) contains all characteristic vectors of the feasible solutions in Φ and
it may also contain a characteristic vector of a subset Y ⊆ E such that Y /∈ Φ.
However, in this case Y must contain a feasible solution X such that X ∈ Φ.

It is assumed that ch(Φ) can be described by a set of linear constraints of the
form:

ch(Φ) =
{
x ∈ {0, 1}n : A [x,x′]T = b

}
, (2.4)

where x’ is a vector of auxiliary variables (if required), A is a matrix and b is
a vector of fixed coefficients. At first, it is supossed that matrix A is totally
unimodular (that is, every square submatrix of A has determinant 0, +1 or –1).
This is usually the case when the deterministic problem is polynomially solvable.
The following function is defined:

φ(x,y) =
n∑

i=1

(c+
i xi + c−i (1 − xi))yi. (2.5)

Proposition 2.2. The MMR-CO problem can be expressed as the following math-
ematical programming problem:

min
x∈ch(Φ)

{∑n
i=1c

+
i xi − min

y∈ch(Φ)
φ(x,y)

}
. (2.6)

Clearly this formulation is not a linear program. However, if matrix A is totally
unimodular then it can be tranformed into a linear problem with binary variables.
To prove this important result, we first fix x, and then consider the subproblem:

min
y∈ch(Φ)

φ(x, y), (2.7)
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which can be rewritten as follows:

min
n∑

i=1

(
c+
i xi + c−i (1 − xi)

)
yi

A [y,y′]T = b (2.8)
yi ∈ {0, 1} ∀i = 1, . . . , n.

From the total unimodularity of A integrality constraints for y can be relaxed
to linear constraints obtaining:

min
n∑

i=1

(
c+
i xi + c−i (1 − xi)

)
yi

A [y,y′]T = b (2.9)
0 ≤ yi ≤ 1 ∀i = 1, . . . , n

For a fixed x problem, (2.9) is a linear program. Then it is possible to construct
a dual problem to (2.9) with the vector of dual variables λ associated with every
constraint. Denote by φ∗(x, λ) the objective of the dual and by Λ(Φ) the set of
feasible dual vectors. Then the dual problem is linear with respect to both x and
y. Moreover, strong duality theorem implies:

min
y∈ch(Φ)

φ(x,y) = max
λ∈Λ(Φ)

φ∗(x, λ). (2.10)

Using above results is obtained:

min
y∈ch(Φ)

φ(x,y) = min
x∈ch(Φ)

min
λ∈Λ(Φ)

{
n∑

i=1

c+
i xi − φ∗(x, λ)

}
. (2.11)

Problem (2.11) is a mixed integer linear programming problem with binary
variables (xi) and real variables (λi) and then it can be solved by standard software.
Moreover, relaxing constraints xi ∈ {0, 1} with 0 ≤ xi ≤ 1 , one obtains a problem
which is polynomially solvable. The solution of this problem gives a lower bound
for the maximal regret of the original MMR-CO problem.

3. Some complexity results on MMR-CO problems

Results about the computational status of MMR-CO problems and complexity
of their algorithms are discussed in the classic book by Kouvelis and Yu [47].
They postulate in their book that MMR versions of most classic CO problems
are NP-Hard in the case of discrete scenarios. Furthermore, little is known about
complexity of interval data MMR-CO problems.
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Aissi et al. [4] in a extensive survey paper have described the main advances
over the last years concerning the complexity of some MMR problems. In our
paper we comment on some of these results, however, the emphasis of our work
lies in the description of exact algorithms and heuristics for MMR problems. In
this sense, our paper is complementary to the former paper.

The following MMR-CO problems (very studied in their deterministic version)
are proved to be NP-Hard [47] when the case of discrete scenarios is considered.

• Assignment problem: NP-Hard even if |Γ| = 2.
• Shortest s-t path problem: NP-Hard even in layered networks of width

2 and with only two scenarios.
• Minimum spanning tree problem: NP-Hard even if |Γ| = 2.
• Resource allocation problem: NP-Hard even if |Γ| = 2.
• Knapsack problem (in absolute robust version): Strongly NP-Hard for

unbounded scenario set Γ.
Several problems are also analyzed in the book [47], where only a few MMR-CO
problems have polynomial time algorithms. In the last 10 years a number of papers
discussing the computational status and algorithms for MMR-CO problems using
interval data have been published. Some of them are discussed next.

3.1. MMR select (p/m) (MMR-SELECT)

Averbakh [10] presented a polynomial algorithm for the MMR problem of select-
ing p elements of minimum total weight out of a set of m elements with uncertainty
in the weights of the elements. This is the first known example of a robust CO
problem that is NP-Hard in the case of discrete scenario uncertainty, but which
is polynomially solvable in the case of the interval representation of uncertainty.
More precisely, Averbakh [10] showed that MMR-SELECT is NP-Hard even if
|Γ| = 2; however, for the case of interval uncertainty he presented a polynomial al-
gorithm O((min {p, m − p})2 ·m). He also commented that the algorithm posseses
practical applications, since the problem represents a family of resource allocation
problems and a class of scheduling problems. Conde [30] improved the former
result, presenting an algorithm with complexity O ((min {p, m − p}) · m).

3.2. MMR s-t path problems (MMR-s-tP)

Averbakh and Lebedev [17] proved that MMR-s-tP is NP-Hard on undirected
networks even if the bounds of all intervals of uncertainty belong to {0, 1}, it is
also NP-Hard on directed networks even if the networks are acyclic, have layered
structure, and the bounds of intervals of uncertainty belong to {0, 1}. It is poly-
nomial if the number of edges with uncertain lengths is fixed or is bounded by the
logarithm of a polynomial function of the total number of edges. The NP-Hardness
of MMR-s-tP was independently proved by Zieliński [67].

Kasperski and Zieliński [44] studied MMR-s-tP for a sparse class of directed
graphs: edge series-parallel multidigraphs. They commented that this class of
digraphs appear in several applications. Also, several problems which are NP-
Hard for general graphs can be solved in polynomial-time in series-parallel graphs.
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They proved that MMR-s-tP remains NP-Hard even if a graph is restricted to
being an edge series-parallel digraph with at most vertex degree equal to three.

3.3. MMR spanning tree problem (MMR-ST)

Averbakh and Lebedev [17] proved that MMR-ST is NP-Hard even if the inter-
vals of uncertainty are equal to [0, 1] and polynomial if the number of edges with
uncertain lengths is fixed or is bounded by the logarithm of a polynomial function
of the total number of edges.

In the same paper, they showed an interesting general result: any interval
data MMR minisum network optimization problem is polynomially solvable if the
number of edges with uncertain lengths is fixed or is bounded by the logarithm
of a polynomial function of the total number of edges. This result is due to the
special structure created by interval data representation of uncertainty.

The NP-Hardness of MMR-ST was independently proved by Aron and Van
Hentenryck [8]. They also proved that this problem remains NP-Hard even if all
the cost intervals are [0, 1] and also if the graph is complete.

Salazar-Neumann [64] studied MMR-ST where edge costs are on a compact and
convex subset of R

n. Here, the location of the worst and best deviation scenarios
for a tree are found. The paper also reports characterizations of strictly strong and
non-weak edges for the above-mentioned problem. Hopefully, these results could
help to find new algorithms that reduce the time to compute a robust spanning
tree in this broad class of problems.

In a related work to MMR-ST, Conde and Candia [36] have shown that the
robust version of minimum spanning arborescence problem (MMR-SA) (a standard
generalization of MST to directed graphs) is polynomially solvable when the input
directed network is acyclic. They presented a greedy linear time algorithm (in the
number of arcs) for MMR-SA.

3.4. MMR assignment problem (MMR-A)

Aissi et al. [1] showed that minmax and minmax regret assignment problems
are strongly NP-Hard when the number of scenarios is not bounded by a con-
stant. In the interval data case, the minmax assignment problem is shown to
be polynomial, whereas the minmax regret assignment problem is proved to be,
in general, strongly NP-Hard, with some specific polynomial cases. Deineko and
Woeginger [38] showed that the discrete MMR-A problem with a fixed number
of scenarios, k ≥ 2, can be transformed into the (standard) discrete minmax as-
sigment problem with a fixed number of scenarios, k ≥ 2 in polynomial time;
moreover, both problems can be transformed into the Exact Perfect Matching
Problem in polynomial time.

3.5. MMR linear programming (MMR-LP)

Averbakh and Lebedev [18] closed the open complexity status of MMR-LP.
They proved that it is strongly NP-Hard and also they commented that the
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discrete-scenario MMR-LP is polynomially solvable since it can be written as an
LP problem of polynomial size in n, m and Γ. Thus, this is the first known ex-
ample of an MMR-CO problem that is NP-Hard in the interval data case while
being polynomially solvable in the discrete-scenario case. The inverse situation,
that is, an example of a MMR-CO problem that is polynomially solvable in the
interval data case but is NP-Hard in the discrete-scenario case was discussed above
in Section 3.1.

Mausser and Laguna [50–52] studied LP in both, MMR and minimax abso-
lute versions. In those papers general algorithms were proposed for MMR linear
programs relying on the fact that for a given solution, in the maximizing regret sce-
nario, each uncertain parameter is set either to its lower or upper interval bound.
Snyder [65] discussed some ideas about algorithmic approaches from these papers.

3.6. MMR facility location problems (MMR-FL)

Several papers advocate to the study of models and algorithms for this class
of problems; the developed models include center, median and centdian problems,
among others, for single or several facilities to be located in different types of
networks. Averbakh [11] proves that if edge lengths are represented by intervals,
then both 1-median and weighted 1-center problems on a general network are
NP-Hard; however, Averbakh and Berman in [15] gave an exact O

(
mn2 log n

)
algorithm for the 1-median problem on a general network with interval-uncertain
node weights, where m is the number of edges and n the number of nodes. In the
case of tree networks, with node or edge location, the same authors presented a
new algorithm with complexity O(n2).

4. Algorithms for some MMR-CO problems

We discuss here different approaches to MMR-CO problems, including exact al-
gorithms, approximation algorithms, heuristics and metaheuristics. An interesting
review of these topics until 2006 is presented in the book of Kasperski [42].

4.1. Exact algorithms

4.1.1. MMR-A
We discuss here the results presented in [42,63]. At first, we present some

notation and the formulation of MMR-A as a network flow problem as is shown
in [42]. We are given a bipartite graph G = (V, E) with interval costs defined on
the set of edges E, [c−e , c+

e ], e ∈ E. For bipartite graphs the set of nodes V can be
partitioned in two disjoint sets V1 and V2 such that | V1 |=| V2 | and if {i, j} ∈ E
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then i ∈ V1 and j ∈ V2. An assignment is a perfect matching in G that is a subset
of edges B ⊆ E in which no two edges share a common node and every node of V
is incident to a exactly one edge of B. The solution of MMR-A is an assignment
which minimizes the maximal regret.

Let G = (V1 ∪ V2, E) be a given bipartite graph. G can be transformed in a
directed graph G′ = (V1 ∪V2, A) by replacing every edge {i, j} ∈ E , i ∈ V1, j ∈ V2

with arc (i, j) ∈ A . If V1 represents a set of sources and V2 represents a set of sinks
then it is supossed every source i ∈ V1 supplies one unit of flow and every sink
j ∈ V2 requires one unit of flow. The arcs of G′ represent available shipping links
and the problem is to send the flow from the sources to the sinks. The amount of
flow that is sent on every arc is assumed to be an integer or equivalently 0 or 1.

Binary variables xij ∈ {0, 1} for every arc (i, j) ∈ A are defined. The following
constraints define feasible solutions for the netwok flow problem.

∑
{j:(i,j)∈A}

xij = 1 ∀i ∈ V1

∑
{i:(i,j)∈A}

xij = 1 ∀j ∈ V2 (4.1)

xij ∈ {0, 1} ∀ (i, j) ∈ A.

Then these constraints can be used to describe set ch(Φ) in MMR-A. It is known
that the constraint matrix of the polyhedra defined above is totally unimodular
and then the relaxed subproblem miny∈ch(Φ)φ(x,y) can be represented in the
following way:

min
∑

(i,j)∈A

(
c+
ijxij + c−ij (1 − xij)

)
yij

∑
{j:(i,j)∈A}

yij = 1 ∀i ∈ V1 (4.2)

∑
{i:(i,j)∈A}

yij = 1 ∀j ∈ V2

yij ≥ 0 ∀ (i, j) ∈ A.

The constraints 0 ≤ yij ≤ 1 have been replaced with yij ≥ 0 because yij ≤ 1 in
every optimal solution of (4.2). The dual of (4.2), that is the problem maxλ φ∗(x, λ)
is the following:

max
∑
i∈V1

αi +
∑
j∈V2

βj

αi + βj ≤ c+
ijxij + c−ij (1 − xij) ∀ (i, j) ∈ A. (4.3)
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Using (2.11), (4.1) and (4.3) the following MIP formulation is obtained for MMR-A.

min
∑

(i,j)∈A

c+
ijxij −

∑
i∈V1

αi −
∑
j∈V2

βj

∑
{j:(i,j)∈A}

xij = 1 ∀i ∈ V1

∑
{i:(i,j)∈A}

xij = 1 ∀j ∈ V2 (4.4)

αi + βj ≤ c+
ijxij + c−ij (1 − xij) ∀ (i, j) ∈ A

xij ∈ {0, 1} ∀ (i, j) ∈ A.

We note that Kasperski [42] only used small instances and in these cases CPLEX
can solve it in at most 1 minute. From these results we also note CPU time increase
very rapidly with the number of nodes. This analysis using the same formulation
is also considered next in the other paper of MMR-A.

In a recent paper ([63]), two exact approaches are compared, one is the same
shown here (Kasperski [42]), and the other is based on Benders decomposition. For
the latter approach, they developed a new linear integer programming formulation
which contains a set with an exponential number of constraints. At each iteration
of this approach a relaxed formulation with only a small subset of constraints is
solved. Then a constraint (Benders cut) that is most strongly violated by the so-
lution is identified and included it in the relaxed formulation of the next iteration.
It is well known that the performance of Benders decomposition can be strongly
influenced by heuristic strategies of including additional Benders cut. They imple-
mented three different strategies, the first includes some constraints before starting
the procedure and it is referred to as the basic Benders decomposition (bBD). The
second strategy is to introduce more than one new constraint at each iteration of
the algorithm. This strategy is likely to reduce the number of iterations but will
increase the time required for the master problem and it will be referred to as
Benders decomposition with two cuts (cBD). The third strategy is based on using
the complicated set of constraints within a Branch and cut approach and it will
be referred to as branch and cut benders decomposition (bcBD).
Beasley instances. The instances are derived from the assignment problem in-
stances available in Beasley’s OR-Library ([19]), the numbers of tasks range from
100 to 500 and the cost coefficients (cP

uv) are integers from [1, 100] . These in-
stances from the assignment problem are converted in MMR-A instances trans-
forming costs in cost intervals by using a parameter β ∈ [0, 1]. The definition
of cost intervals allows to generate instances with different levels of uncertainty
by modifying β. For each original instance three different values of β were used,
β ∈ {0.1, 0.25, 0.5} . Ten different instances of MMR-A problem were generated
for each original instance of the assignment problem and a specific value of β, so
150 instances of MMR-A were generated in total.
McGeoch instances. Eight instances of the classic Assignment problem were ini-
tially generated based on two parameters, the number of tasks n, nmin = 100 and
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nmax = 500, and the upper bound M = 1 000 000 for basic costs. For each classic
instance three groups of instances of MMR-A were generated using the parameter
β ∈ {0.1, 0.25, 0.5} . Each group contained 10 instances where uncertainty intervals
for costs were generated in the same way as for Beasley instances. 240 instances
were generated in total and the initial eight instances of the classic Assignment
problem were generated using the generator of McGeoch.
Montemanni instances. A similar procedure to proposed for TSP in [59] for gen-
erate interval costs is used. 80 instances were generated in total, ten for each
problem size.
Kasperski instances. The instances for MMR-A are generated in the same way
described when we discussed the approach by Kasperski [42] above. A total of 80
instances were generated, ten for each problem size.
Computational results. According with the results obtained in their implementa-
tion, Pereira and Averbakh [63] concludes that the basic MILP formulation with
the use of CPLEX is a reasonably reliable method for solving optimality or al-
most optimality small instances (up to n = 100), and it is the best of the exact
methods for moderate size problems (up to n = 300), while Benders decomposi-
tion approaches run better for larger instances ( n > 300). We note that Benders
decomposition is more efficient for larger instances because it is based on the
knowledge of the problem structure. Beasley instances were harder to solve, and
for them Benders decomposition approach become more effective than CPLEX
starting with smaller problem sizes (n = 200). With respect to the different Ben-
ders decomposition variants, for small instances, n ≤ 150, bcBD variant performs
better than bBD and cBD, for medium size instances (n = 300) all three variants
are comparable and for large instances (n > 300), all three variants are compara-
ble in terms of the quality of the obtained solutions, but the variant bBD is more
successful in obtaining good lower bounds which results in significantly lower re-
ported optimality gaps for Beasley, Montemanni and Kasperski instances. The
authors also discussed the relation between the difficulty of the problems and the
degree of uncertainty.

In our opinion, one interesting conclusion from the computational experiments
realized with these algorithms for MMR-A is the high difficulty to solving McGeoch
and Beasley instances; for these groups all the algorithms found high gaps and then
stronger approaches for solving these instances are needed.

4.1.2. MMR-ST
Yaman et al. [66] presented a mixed integer linear programming formulation of

the problem, and defined some characterizations leading to efficient preprocessing
techniques before applying a CPLEX solver to the MILP formulation; computa-
tional experience was also reported illustrating the efficiency of the preprocessing
procedures. MMR-ST is defined on a connected graph G = (V, E), with | V |= n,
and interval costs [c−e , c+

e ] , ∀e ∈ E.
Mathematical Programming Formulation. Two mixed linear integer pro-
gramming formulations for MST were used in his approach for solving MMR-ST.
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These formulations for MST appear in the book of Magnanti and Wolsey [49]; in
the first formulation are defined variables xe to indicate if an edge e in E to be
available to carry any flow. In this single commodity model, one node (node 1) is
defined as a source node and one unit of flow must be sent from 1 to every other
node, A is the set of arcs formed with the set of nodes V and fij is the flow on arc
(i, j). The model (P1) is formulated as follows.

min
∑
e∈E

cexe

s.t.
∑

(i,j)∈A

fij −
∑

(j,i)∈A

fji =
{

n − 1, if i = 1
−1, ∀i ∈ V \ {1}

fij ≤ (n − 1)xij ∀ {i, j} ∈ E,
fji ≤ (n − 1)xij ∀ {i, j} ∈ E (4.5)∑
e∈E

xe = n − 1, f ≥ 0

xe ∈ {0, 1} ∀e ∈ E.

A second formulation uses the directed version of the MST problem. Any
node named root node, let say 1 is selected as the root node. Then it is possible
directs the edges of any spanning tree so that the path from the root node to any
other node is directed from the root node to that node. The digraph so obtained
is denoted by D = (V, A). The resulting formulation is known as the directed
multicommodity flow model. In the model, every node k �= 1 defines a commodity:
one unit of commodity k originates at the root node 1 and must be delivered to
node k. Letting fk

ij be the flow of commodity k on arc (i, j); the variables xij

define a capacity for the flow of each commodity on arc (i, j) only if the arc is a
member of the directed spanning tree defined by the vector x. They formulated
the model (P2) as follows.

min
∑

{i,j}∈E

cij (xij + xji)

s.t.
∑

(j,1)∈A

fk
j,1 −

∑
(1,j)∈A

fk
1,j = −1 ∀k ∈ V \ {1}

∑
(j,i)∈A

fk
j,i −

∑
(i,j)∈A

fk
i,j = 0 ∀i, ∀k ∈ V \ {1} and i �= k (4.6)

∑
(j,k)∈A

fk
j,k −

∑
(k,j)∈A

fk
k,j = 1 ∀k ∈ V \ {1}

fk
ij ≤ xij ∀ (i, j) ∈ A and ∀k ∈ V \ {1}∑

(i,j)∈A

xij = n − 1,

f ≥ 0 and x ≥ 0.
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Note that in the model the variables x need not be forced to integer values
since the polyhedra of (P2) has integer extreme points. Yaman et al. [66] use both
formulation (P1) to characterize the edges on the robust spanning tree, and the
dual version of model (P2) to find the cost of the minimum spanning tree when
the costs of all edges on the robust tree are at upper bounds and the costs of all
remaining edges are at lower bounds. The flow balance constraints are replaced by
the equivalent inequality constraints and then the dual LP of (P2) can be written
as follows:

max
∑

k∈V , k �=1

(
αk

k − αk
1

)
+ (n − 1)μ

s.t. σk
ij ≥ αk

j − αk
i ∀ (i, j) ∈ A and ∀k ∈ V \ {1}∑

k �=1

σk
ij + μ ≤ cij ∀ {i, j} ∈ E (4.7)

∑
k �=1

σk
ji + μ ≤ cij ∀ {i, j} ∈ E

σ, α ≥ 0 and μ unrestricted.

The robust tree formulation (R) follows, where variables xe define the edges
included in the tree,

min
∑
e∈E

c−e xe −
∑

k∈V , k �=1

(
αk

k − αk
1

)
− (n − 1)μ

s.t. σk
ij ≥ αk

j − αk
i ∀ (i, j) ∈ A, ∀k ∈ V \ {1}∑

σk
ij + μ ≤ c−ij +

(
c+
ij − c−ij

)
xij , ∀ {i, j} ∈ E∑

σk
ji + μ ≤ c−ij +

(
c+
ij − c−ij

)
xij , ∀ {i, j} ∈ E

∑
(i,j)∈A

fij −
∑

(j,i)∈A

fji =

{
n − 1 if i = 1

−1 ∀i ∈ V \ {1}
(4.8)

fij ≤ (n − 1)xij ∀ {i, j} ∈ E

fji ≤ (n − 1)xji ∀ {i, j} ∈ E∑
e∈E

xe = n − 1

f, σ, α ≥ 0 and μ unrestricted

xe ∈ {0, 1} ∀e ∈ E.
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The preprocessing procedures are based on the identification of weak and strong
edges in the input graph. Yaman et al. [66] found simple and efficient algorithms
to identify these edges.

Computational experience and analysis. Formulation (R) was used to com-
pute optimal solutions in complete graphs with n = 10, 15, 20, 25. The preprocess-
ing procedures were effective eliminating % of the edges of the graph. However
we note that the times execution after preprocessing remain high, showing the
problem hardness.

We now analyze the Benders decomposition approach by Montemanni [53].
Mathematical programming formulation. Montemanni used the same for-
mulations as [66] but the primal MST formulation is changed with another one
with fewer variables and more constraints. The resulting MIP formulation is de-
noted by RST. For any given vector x̃ ∈ X it is possible to define a problem in
variables σ, α and μ only, starting from the mixed integer program RST. This
problem is called the primal subproblem and it is denoted as (P (x̃)). Dualizing
again, they obtain the next dual subproblem D(x̃) which is a classic formulation
for the minimum spanning tre problem in variables f and y (see Magnanti and
Wolsey [49]. Let R be the feasible region (not empty) of the dual subproblem and
let RP be the set of extreme points of R. By strong duality and by using the fact
that R is a polytope, the primal subproblem is feasible and bounded. Since D(x̃)
is a linear program, original RST can be written (see [53] for the details) in more
compact way as follows:

(M) min z

s.t. z ≥
∑

{i,j}∈E

uijxij−
∑

{i,j}∈E

(
c−ij +

(
c+
ij − c−ij

)
xij

)
(yij + yji) ∀y ∈ RP

∑
{i,j}∈E

xij = |V | − 1 (4.9)

∑
{i,j}∈Γ(C)

xij ≥ 1 ∀C ⊂ V

xij ∈ {0, 1} ∀ {i, j} ∈ E.

From the formulation (M) a Benders decomposition approach is developed,
which is based on an iterative scheme. Let τ represent the iteration number and
let Rτ

P represent the restricted set of extreme points of RP available at iteration τ .
Each of these extreme points produces a so-called Benders cut ; these cuts will
be iteratively added during the execution of the Benders decomposition approach.
The relaxed master problem is described as follows:

Solve the following mixed integer problem, M τ , which is the relaxed version of
the master problem obtained by replacing RP with Rτ

P , i.e., by considering the
extreme points available at iteration τ only.
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(M τ )min z

s.t. z ≥
∑

{i,j}∈E

uijxij−
∑

{i,j}∈E

(
c−ij +

(
c+
ij − c−ij

)
xij

)
(yij + yji) ∀y ∈ Rτ

P

∑
{i,j}∈E

xij = |V | − 1 (4.10)

∑
{i,j}∈Γ(C)

xij ≥ 1 ∀C ⊂ V

xij ∈ {0, 1} ∀ {i, j} ∈ E.

A procedure to efficiently solve Mτ to optimality was used.
Notice that as τ increases, M τ progressively looses unimodular property (true

only for τ = 1), and it becames more and more difficult to solve in terms of integer
programming. Montemanni [53] first applied the preprocessing procedure already
discussed and then applied Benders decomposition.

In his paper, Montemanni [53] compared the performance of the Benders de-
composition approach with the algorithm (already discussed) by Yaman et al. [66],
the Branch and bound algorithm by Aron and Von Hentenryck [7], and the branch
and bound algorithm by Montenmanni and Gambardella [56]. For each family of
problems, Montemanni [53] reported the average number of iterations of the Main
step required by the algorithm solving the Benders decomposition approach to cer-
tify an optimal solution. It is showed that the number of iterations required by
the Benders decomposition approach to converge increases with V , as expected.
Also, it is noted that the number of iterations does not explode for large values of
|V |. For benchmark 2 Montemanni [53] reported that τ increases at the increasing
of the average interval width (depending on p).

Considering the computational results in [53,56] we conclude that optimal so-
lutions for this problem are very difficult to obtain using these exact algorithms
applied to complete graphs with more than 50 nodes. The run time increases
dramatically with the number of nodes.

Finally, Conde [33] developed a branch and bound algorithm for the MMR
Spanning Arborescence problem. The computational behavior of the proposed
method is good because it is close to the behavior of previous branch and bound
algorithms for his undirected problem version.

4.1.3. MMR-TSP

The most important effort devoted to exactly solve the robust counterpart of
the TSP was done by Montemmani et al. in [59]. Based on structural properties,
an appropiate mathematical programming formulation is presented which allows
the development of three exact approaches: B&B, B&C and Benders decompo-
sition. These algorithms are implemented and then compared; again, Benders
decomposition had the best relative performance.
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Mathematical programming formulation. Since duality equivalences are not
valid in the case of the TSP independently of the formulation used, it is not
possible to derive MILP formulations like the one proposed for the MMR-ST.
However, since a structural property similar to the one valid for the MMR-ST
also holds for the MMR-TSP, it is possible to give a mathematical programming
formulation. This formulation has a huge number of constraints, it is useful in
order to design part of the algorithmic framework developed by the authors. The
mathematical programming formulation given for the MMR-TSP is presented in
(4.11)–(4.14).

min
∑

{i,j}∈E

c+
ijxij − r (4.11)

s.t. r ≤
∑

{i,j}∈E

yijc
−
ij +

∑
{i,j}∈E

yij

(
c+
ij − c−ij

)
xij ∀y ∈ T SP (4.12)

x ∈ T SP (4.13)
r ∈ R. (4.14)

In this formulation, constraint (4.13) says that vector x should represent a
Hamiltonian circuit. Any feasible MILP formulation for the classic TSP can be
used. This set of constraints substitutes the nested min operator and incorporates
the structural property for the calculation of the maximum regret of the tour
defined by x variables; note that in these inequalities, y plays the role of a constant
vector representing a tour.

Independently from the formulation chosen to make constraint (4.13) explicit,
the main bottleneck of this formulation is represented by constraints (4.12), that
are exponential in number (in case graph G is complete, all possible permutations
of the nodes in V \ {0} are feasible tours). The formulation is consequently not
suitable to be directly handled as it is, in case of realistic size problems, and specific
exact algorithms must be designed.

Exact algorithms. As it has been already said, three exact approaches for the
MMR-TSP are developed: B&B, B&C and Benders decomposition. Only B&C
and Benders decomposition methods are based on the formulation (4.11)–(4.14).

• Branch and bound algorithm B&B: This algorithm is based on the
B&B algorithms presented by Montemmani and Gambardella [56] for the
MMR-MST and Montemmani et al. [54] for the MMR-SP.

The algorithm builds and visits a search-tree and the main elements
of the procedure are the branching strategy, the calculation of a support
solution and the robustness measure (regret) associated with that solu-
tion. For the efficient calculation of the support solution and the regret
associated with that solution, classic instances of the TSP must be solved,
therefore the available state-of-the-art tools for solving the classic TSP are
used.
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• Branch and cut algorithm B&C: As it is said, this algorithm relies on
the formulation given by (4.11)–(4.14).

The first element of the algorithm to take into consideration is the use of
a MILP formulation for constraints (4.13) in the formulation of the MMR-
TSP. The authors used the formulation presented by Dantzig et al. [37] to
describe T SP because is convenient from a computational point of view.
The main drawback of this formulation is the presence of subtour elimi-
nation constraints which are exponential in number, but it is known that
only a few of them will be active at optimality. Thus, the strategy adopted
in the paper is to iteratively add those subtour elimination constraints that
are violated in the last available solution.

Method B&C shares many elements of the B&B algorithm; they both
build and visit a search-tree and each node of this search-tree can be iden-
tified the same elements used for the B&B algorithm. The main difference
between the two methods is the calculation of the lower bound given by
the solution at each node. At each node of the search-tree defined in the
B&C procedure a linear programming relaxation of the MMR-TSP formu-
lation is solved and the obtained solution reinforces the formulation with
some cuts originated by the violation of one or more subtour elimination
constraint.

• Benders decomposition algorithm BD: As it is observed in the for-
mulation of the MMR-TSP, there is an exponential number of constraints
of type (4.12). Therefore, a Benders descomposition approach is proposed
by the authors to handle these constraints.

In the case of formulation (4.11)–(4.14), only a few constraints of type
(4.12) will be active at optimality, and therefore these constraints are gen-
erated iteratively when violated by using a Benders decomposition strat-
egy. A relaxed version of the MMR-TSP is first solved with no constraint
of type (4.12) and the most violated constraint of type (4.12) is added
reinforcing the relaxed formulation which will be solved again; the pro-
cess repeats until optimality tests are fulfilled. The auxiliary classic TSP
problems that must be solved in the process are solved by using standard
exact approaches developed for the symmetric TSP.

Computational results. Algorithms B&B, B&C and BD used ILOG CPLEX
9.0 to handle and solve the auxiliary MILP problems. Each time a classic TSP had
to be solved to optimality, the authors used callable libraries based on algorithm
LKH 1.3 and Concorde 03.12.19, that represented the state-of-the-art heuristic
and exact algorithm for the symmetric TSP, respectively.

Since no benchmark problem was available for MMR-TSP with interval data,
the authors generated a new benchmark of two families of problems. The first
family, random instances is a set of non-Euclidean random instances and the sec-
ond family of problems, TSPLIB instances, was generated from classic Euclidean
TSP instances available at the TSPLIB.

The computational results presented in the paper for both benchmark instance
suggest that B&B is not suitable even for small size problems (30 nodes). B&C
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algorithm presents a better performance, being able to solve to optimality instances
up to 50 nodes in the case of random instances and up to 42 nodes in the case of
TSPLIB instances. BD strategy presents the best performance among the three
algorithms; in the case of random instances the algorithm solves to optimality
instances up to 80 nodes, and up to 58 nodes in the case of TSPLIB instances ;
however, BD is able to handle larger instances, 360 nodes in case of random and
180 in case of TSPLIB, presenting average GAP equal to 13.21% and 27.40%
respectively.

The results also suggested an influence of parameter M in case of random in-
stances and parameter β in case of TSPLIB instances. These parameters manage
the different levels of uncertainty associated with each instance. When increasing
the value of M nd β for a given instance, and thus increasing the range of the
corresponding cost intervals, the computational times of BD also increases.

From the experiments it is clear that the algorithms implemented are not able
to solve (with GAP = 0) instances with over 100 nodes, especially for TSPLIB
instances.

4.1.4. Another MMR-CO problems

s-t path (MMR-SP). A Benders decomposition method was also applied in [57]
obtaining similar conclusions to those appearing in [53] for MMR-ST. Kasper-
ski [42] proposed a MIP formulation and solved by CPLEX a set of instances
containing until 900 nodes in reasonable times and he also proposed a branch and
bound approach solving the same instances in lower times.

Linear resource allocation problem (MMR-RA). The MMR-RA problem studied
by Averbakh [12] is defined as follows: Find non-negative integer (or real) numbers
x1, x2, . . . , xn so as to minimize the linear function w1x1 + w2x2 + . . . + wnxn,
subject to the constraint x1 + x2 + . . . + xn = p. Interval data uncertainty in
the coefficients w1, w2, . . . , wn is considered, where it is assumed that an interval
estimate is known for each coefficient, and each coefficient can take any value from
the corresponding interval of uncertainty, regardless of the values taken by other
coefficients. He presented an algorithm with complexity O(p log n+n log(n+p)) for
the case of integer variables and an O(n log n) algorithm for the case of continuous
variables. The latter result implies an O(n log n) algorithm for the interval data
MMR continuous Knapsack problem.

After that, Conde [31] developed a new linear-time algorithm for the MMR
continuous unbounded knapsack problem, improving the result in [12].

MMR facility location problems. Exact algorithms for MMR robust location
have generally been developed for only certain types of problems due to the NP-
Hard behavior given by minmax formulations; locating a single facility or locating
facilities on certain types of networks are usually the considered cases. Besides
the long list of problems and their corresponding exact algorithms for both special
and general networks presented by Snyder [65], recent papers consider related
problems; Aloulou et al. [5] developed an O (mnq (log n + q)) algorithm for the
1-center problem in a general network with a discrete set of scenarios, being m
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the number of edges, n the number of nodes and q the number of scenarios. In an
extensive paper, Averbakh and Bereg [14] considered the 1-median and weighted 1-
center problems on a plane with uncertain weights and customer coordinates; they
present an O

(
n2 log2 n

)
algorithm for the 1-median problem and an O (n log n)

algorithm for the weighted 1-center problem. They also developed exact algorithms
considering Euclidean distances. Conde [34] studied doubly weighted centdian (a
combination of center and median) location on trees assuming that both types
of weights, demands and relative importance of the costumers, are represented
by closed intervals but edge lengths are completely known; an O

(
n3 log n

)
exact

algorithm is presented.

4.2. Approximation algorithms, heuristics and metaheuristics

Aissi et al. [2] studied the approximation of minmax (regret) versions of prob-
lems like MST, SP and Knapsack. They obtain some important results which are
summarized next.

# scenarios Constant Constant Non-constant Non-constant

Minmax Minmax regret Minmax Minmax regret

SP FPTAS FPTAS Not (2 − ε) approx. Not (2 − ε) approx.

MST FPTAS FPTAS Not (3/2 − ε) approx. Not (3/2 − ε) approx.

Knapsack FPTAS Not at all aprox. Not at all aprox. Not at all aprox.

Kasperski and Zieliński [43] designed a polynomial time approximation algo-
rithm (K&Z algorithm) with a performance ratio of 2 for MMR-CO for which
their classic version is polynomially solvable. This class of problems includes MST,
SP and AP. The algorithm first determines scenario S in which the costs of the
elements are the midpoints of their corresponding cost intervals and then a poly-
nomial algorithm AOpt is applied for the classic CO problem using the determined
scenario S. The complexity of the K&Z algorithm is then defined by the complex-
ity of algorithm AOpt. In [24], Candia and Álvarez presented a generalization of
the K&Z algorithm, and they proved that the property of the solution remains
valid if we replace the number 1

2 by any positive real number p when the scenario
S is defined in the K&Z algorithm. This result is interesting, because it is pos-
sible to think that the scenario S given by the midpoints of each interval is the
only scenario satisfying the property established; to the contrary, the result shows
that this property essentially comes from the sum of the extreme values of each
interval cost. In the same paper, the situation where several solutions might be
found is also analyzed. Conde [35] extends the result of [43] to models with com-
pact constraint sets. Kasperzki and Zieliński (see [44]) also proposed a FPTAS for
MMR CO under the assumption that a pseudopolynomial algorithm is given. Fur-
thermore, they show the uselfuness of the obtained results when studying MMR
versions of the shortest (longest) path and the minimum (maximum) s-t cut in
series-parallel graphs.

Conde and Candia [36] presented a set of structural properties for the MMR
spanning arborescence problem, a generalization of MMR-ST on directed networks
(thus NP-Hard problem). The properties were used to obtain upper and lower
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bounds for the optimal value and a heuristic based on these bounds was proposed.
Computational experiments illustrating the quality of the results achieved by the
heuristic were presented; very near optimal solutions were found in short times for
randomly generated graphs with up to 125 nodes. The experiments also included
comparisons with the K&Z algorithm and they showed how a feasible solution,
giving a good upper bound for the optimum value, improves by 5.36% on average
the objective value obtained from the solution given by the K&Z algorithm. Fi-
nally, the convergence of the heuristic to an optimal solution was studied using a
class of zero sum games.

Montemanni et al. [58] studied heuristics and preprocessing techniques for in-
terval data MMR-TSP. In particular, they presented efficient tools for estimating
the robustness of a given tour, producing heuristic solutions to the problem and
preprocessing the problem in order to identify edges that will never be on an op-
timal robust tour. The tools were evaluated from a computational point of view.
Three simple heuristics were tested, where K&Z was one of them; another (HU),
is defined by the scenario U , where all the costs are at the highest possible value;
and the last (HMU), runs in sequence K&Z and HU and returns the solution with
the lowest upper bound for the cost between the two. HMU had a very good
performance for several classes of instances considering up to 58 nodes.

Nikulin [61] proposed the application of the metaheuristic simulated annealing
(SA) to MMR-ST, in order to efficiently obtain an approximate solution for a
family of benchmarks similar to the ones presented in [53,56]. Similar to the
approach of Yaman et al. [66], non weak edges can be deleted and strong edges
are detected (both in polynomial time) in a preprocessing stage. SA is one of the
most popular metaheuristics and here we present the most important steps of the
implemented SA.

• Search Space. Here is an important variant of the typical definition of
points in the search space. Typically the point are defined by spanning
trees but in this approach then points are defined only by connected
graphs. So, at each iteration it is not necessary to check whether the
search point represents an acyclic graph or not. Clearly, as far as any
connected graph with cycles contains some spanning tree and the value of
objective of such graph is always greater than the value of the objective
for the spannning tree then this spanning tree will be most likely detected
later during the execution of SA. This definition allows to save a lot of
running time avoiding extra checking for non-cicling.

• Initial Solution. An input graph (which is assumed connected) is chosen
as the starting point.

• Neighbourhood search moves. One edge from the input graph is randomly
selected. One move is defined in the following way. If the edge belongs to
the current solution (a connected graph) and deleting it disconnects the
graph then the search fail and a new edge must be selected. Otherwise,
a new connected graph is obtained; if the worst case scenarios of the two
connected graphs are evaluated then the cost charge Δ of performing a
neighbourhood search move is calculated by the difference of two minimum



MINMAX REGRET COMBINATORIAL OPTIMIZATION 123

spanning tree problems minus the cost of the selected edge at his maximum
value. Both minimum spanning trees problems are defined by the worst-
case scenarios of the corresponding connected graphs. The situation is
similar for the other move, that is, if the selected edge does not belong
to the current solution. It is also noted the move in this case means to
add the edge to a connected graph and then the new graph is necessarily
connected and consequently the checking of connectivity is saved.

• Acceptance probability rule. The very known Metropolis acceptance rule
is used.

• Cooling Schedule. The initial cooling temperature T0 is defined as T0 =
100cmax. where cmax is the maximum of the upper costs. Annealing sched-
ule was defined as a geometric decreasing with parameter α = 0.95

• Termination criterion. SA is repeated until the temperature decrease to
nearly zero before termination, the limit 0.001 was used.

The efficiency of the algorithm was improved by using gradient descent method.
Let L be the parameter that determines the number of succesful moves that are
considered at each temperature level. A larger value increases the optimization
time, but tends to yield solutions with a narrower spread around the global op-
timum. For instances with small number of nodes (up to 10) the parameter was
defined as 10, for medium instances (with 15–20 nodes) the parameter value was
L = 30 and for greatest instances the parameter was defined as L = 50. Among
L possible moves it is chosen the one with minimal value of Δ.
Computational experiments. A family of benchmarks similar to the one pre-
sented in [59] was used in order to evaluate SA. Complete graphs of 10, 25 and
50 nodes was considered. For each edge (i, j) the lower bound of its cost, lij was
randomly generated from (0,20) and the upper bound uij from (lij , 40). The run-
ning times of SA are compared with the result of Montenmanni [53,56] where the
fastest exact algorithms based on branch and Bound and Benders decomposition
were presented. For comparison the differences between the machines used in the
experiments where considered when the algorithms were compared. Nikulin [61]
shows that SA takes 185 s in solve the greatest instances (50 nodes) while Ben-
ders decomposition takes 1153 s. Based on these results the author commented
that “the SA algorithm can be effectively applied for large instances where all
the known exact techniques are time consuming”. For a more detailed analysis
of the SA algorithm, Nikulin addressed four benchmark instances with 5, 10, 15
and 20 nodes. He used the mixed integer reformulation of the robust spanning
tree problem in Yaman et al. [66], encoded the model with AMPL-lenguage and
solved the instances by ILOG CPLEX 7.0.o in order to get an exact solution for
the instances. He runs s = 100 times the SA metaheuristic calculating the number
s1 of successful runs of SA, that is when SA found the optimal solution, and also
calculated the number s2 of satisfactory runs of SA, that is, where the approximate
solution is very close to optimal one. Furthermore, Nikulin compared the results
of SA with the results produced by the heuristic KZ ([43]). For all benchmarks
considered, the solution produced by SA outperformed the solution given by KZ
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heuristic. In our opinion the results obtained by SA are good but it is difficult to
be sure about the quality of SA solutions for greater instances.

MMR-A. Pereira and Averbakh ([63]) propose three heuristics for the prob-
lem: a variable depth neighborhood local search and two hybrid population-based
heuristics. They also mention that the only references about heuristics designed
for MMR-A are from the book of Kasperski [42] where he compared an exact al-
gorithm with heuristics HM and HU defined starting this section. Since the vari-
able depth neighborhood local search was not competetive with population-based
heuristics, as informed by the authors, we only describe the latter approaches. The
heuristics based on populations use the same concepts of genetic algorithms (GA),
a traditional approach for solving NP-Hard optimization problems. The main
components of a GA algorithm are: chromosome representation, initialization, se-
lection, crossover and mutation operators; some detail about every component of
GA is presented.

Representation and initialization. In the algorithm, an individual is a feasible
solution for the problem, that is, a perfect matching and it is represented by a
vector of size n (chromosome). Elements of sets U and V are indexed, so elements
u ∈ U and v ∈ V can be considered as numbers from set {1, 2, . . . , n}and a position
k in the vector contains the task assigned to the worker k . An assignment of a
task to a specific worker (a component of the cromosome vector) is called a gene.
Then, a chromosome consists of n genes.

All individuals in the initial population are different and they are generated
solving classic Assignment problems for specific scenarios.

Parent selection and crossover. Parent selection is based on a binary tour-
nament selection operator. Two parents are randomly chosen from the current
population and the better fit of the two becomes the parent. Two parents produce
one child. The crossover operator is a combination of the generalized fitness-based
crossover operator with an optimization subproblem. The basic idea of the au-
thors is to keep the genes that are shared by both parents, and to optimize the
other genes by trying to solve approximately a reduced MMR-A problem where
the variables that correspond to the genes shared by the parents are fixed and the
other variables are free. Two versions of the population-based heuristic are defined
from this basic idea. The versions differ in the way the residual MMR-A is solved.
In the first version the apply the scenario-based heuristic to the residual instance
and use the obtained solution to define the values of the remaining free genes; this
version is called GA-SCEN. In the second version (GA-MILP) they apply CPLEX
MILP solver to the MILP formulation of the residual instance.

Mutation. The purpose of the mutation operator is to diversify the search.
They define the maximum number of genes to mutate, v, as follows:

v =
mf

1 + e
(−4mg(t−mc)

mf

,

where t is the number of child solutions that have been generated, mf specifies
the final stable mutation rate, mc specifies the number of child solutions generated
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at which the mutation rate of mf

2 is reached, and mg specifies the gradient at
t = mc. The value v is then rounded up and all these constants are parameters
of the algorithm. The objective of this rate is that the importance of mutations
increases as the search approaches convergence.

Fitness evaluation. The fitness (maximal regret) of any individual X can be
obtained by solving a classic Assignment problem. The child obtained after the
application of the crossover operator is inserted in the population instead of the
previously worst member.

Some remarks. The authors commented that their GA approach contains some
non standard characteristics. First, not all genes are inherited from the parents,
and second, using optimization within the crossover operator introduces Lamarck-
ian features to the process. Population-based heuristics that combine Darwinian
features and Lamarckian ones are known as memetic algorithms. This GA ap-
proach exploits the efficiency of the MILP solver for small instances when solving
a large problem and also exploits the good performance of the fast scenario-based
heuristic. With respect to convergence criteria one standard criteria is used, GA
stops if the best known solution is not improved for a number of iterations equal
to the population size.

Computational experience with GA. The authors considered the same four sets
of instances they used for the study of the performance of an exact algorithm.
They make some observations after the analysis of the computational experience.

• Population-based heuristics are superior to other tested heuristics.
• Starting with some problem size, population-based heuristics are superior

to exact methods (remember that for many instances they ouput large
gaps).

• Starting with some problem size, GA-SCEN is superior to GA-MILP, while
GA-MILP may be better or comparable for smaller problem sizes.

• For large instances (n > 300), GA-SCEN is overall superior to all other
tested approaches.

Finally they suggested some decisions when you must solve a MMR-A problem
depending on the problem size.

Our opinion about the performance of both exact and heuristic algorithms pro-
posed for MMR-A is that the performance strongly depends on the particular
class studied. Clearly, McGeoch and Beasley instances are harder than Monte-
manni and Kasperski instances. Other important point is the small difference in
the performance of the algorithms tested for each class of instances of both exact
and heuristic approaches. Again, new approaches, principally heuristics could be
designed for Beasley and McGeoch instances.

5. Future work

Optimization under uncertainty is nowadays a developing area . Theory, mod-
els, algorithms and applications are expanding the limits of optimization generat-
ing new opportunities of solving more real problems. In particular, an important
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part of this area related to Combinatorial Optimization problems using the MMR
model has been presented here. However, we are sure important challenges remain
today. Some of them are discussed next.

It would be very interesting to study relations among the MMR models and
other robustness models like the Bertsimas and Sim model [20], and the Chen
et al. model [29]; preliminary studies we conducted (see [6]) showing some partic-
ular connections between these two models when applied to robust shortest path.
Furthermore, because the robust models are applicable, we feel there are opportu-
nities to consider robust optimization models for solving more real world problems
than those presented here.

Computational aspects are very important because the three models commented
here, MMR, Bertsimas and Sim [20] and Chen et al. [29] are associated to NP-hard
problems in most cases (MMR model). Otherwise there are polynomial algorithms
for several class of problems but with high degree of polynomiality [20,29]. The
design of new exact algorithms and heuristics exploting the particularities of the
complex problems and the uncertainty structure is necessary to get an effective
algorithmic design.

We suggest as an important challenge the study of robust problems that even
in their classic versions are proved NP-Hard, and that the existing algorithms for
such problems consider the SP or MST as underlying problems. In this context,
Montemmani et al. [59] studied the TSP using a structural property proven valid
for certain problems, and heuristics are developed considering the fact that SP
must be solved. The Steiner problem (STN) might be an interesting candidate
because it falls within the mentioned framework and it is known that the heuristic
development for the STN uses SP and MST as underlying problems and several
algorithms exist for their MMR problems.

Finally, it is necessary the design of efficient heuristics for solving MMR-CO.
From the analysis done in this paper it is clear that exact algorithms only can
solve, with gap 0, small instances for most problems studied. Only a few heuristics
have been designed for these problems considering the great development of these
algorithms.
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Paris-Dauphine, Cahier du LAMSADE (2006).



MINMAX REGRET COMBINATORIAL OPTIMIZATION 127

[6] E. Alvarez-Miranda and A. Candia-Vejar, Robust Shortest Path: Models, Algorithms and
Comparisons, Proceedings of the VI ALIO/EURO Workshop on Applied Combinatorial
Optimization. Buenos Aires, Argentina (2008).

[7] I. Aron and P. Van Hentenryck, A constraint satisfaction approach to the robust span-
ning tree with interval data, Proceedings of the International Conference on Uncertainty in
Artificial Intelligence UAI (2002) 18–25.

[8] I. Aron and P. Van Hentenryck, On the complexity of the robust spanning tree problem
with interval data, Oper. Res. Lett. 32 (2004) 36–40.

[9] T. Assavapokee, M.J. Realff and J.C. Ammons, Min-max Regret robust optimization ap-
proach on interval data uncertainty. J. Optim. Theory Appl. 137 (2008) 297–316.

[10] I. Averbakh, On the complexity of a class of combinatorial optimization problems with
uncertainty. Math. Program. Ser. A 90 (2001) 263–272.

[11] I. Averbakh, Complexity of robust single facility location problems on networks with uncer-
tain edge lengths. Discr. App. Math. 127 (2003) 505–522.

[12] I. Averbakh, Minmax regret linear resource allocation problems. Oper. Res. Lett. 32 (2004)
174–180.

[13] I. Averbakh, Computing and minimizing the relative regret in combinatorial optimization
with interval data. Discr. Optim. 2 (2005) 273–287.

[14] I. Averbakh and S. Bereg, Facility location problems with uncertainty on the plane. Discret.
Optim. 2 (2005) 3–34.

[15] I. Averbakh and O. Berman, Minmax regret median location on a network under uncertainty.
ORSA J. Comput. 12 (2000) 104–110.

[16] I. Averbakh and O. Berman, Algorithms for the robust 1-center problem on a tree. Eur. J.
Oper. Res. 123 (2000) 292–302.

[17] I. Averbakh and V. Lebedev, Interval data regret network optimization problems. Discr.
App. Math. 138 (2004) 289–301.

[18] I. Averbakh and V. Lebedev, On the complexity of minmax regret linear programming. Eur.
J. Oper. Res. 160 (2005) 227–231.

[19] J.E. Beasley, OR-Library: distributing test problems by electronic mail. J. Oper. Res. Soc.
41 (1990) 1069–1072.

[20] D. Bertsimas and M. Sim, Robust discrete optimization and network flows. Math. Program.
Ser. B 98 (2003) 49–71.

[21] D. Bertsimas and M. Sim, The price of robustness. Oper. Res. 52 (2004) 35–53.
[22] L. Bianchi, M. Dorigo, L. Gambardella and W. Gutjahr, Metaheuristics in Stochastic Com-

binatorial Optimization: a Survey. IDSIA Technical Report, IDSIA-08-06 (2006), Natural

Computing 8 (2009) 239–287.
[23] R.E. Burkard and H. Dollani, A note on the robust 1-center problem on trees. Disc. Appl.

Math. 138 (2004) 289–301.
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[67] P. Zieliński, The computational complexity of the relative robust shortest path problem with

interval data. Eur. J. Oper. Res. 158 (2004) 570–576.


	Introduction
	Definitions and a fundamental property
	Definitions
	A Fundamental property for maximal regret
	A general MIP for MMR-CO problems with interval data

	Some complexity results on MMR-CO problems
	MMR select (p/m) (MMR-SELECT)
	MMR s-t path problems (MMR-s-tP)
	MMR spanning tree problem (MMR-ST)
	MMR assignment problem (MMR-A)
	MMR linear programming (MMR-LP)
	MMR facility location problems (MMR-FL)

	Algorithms for some MMR-CO problems
	Exact algorithms
	Approximation algorithms, heuristics and metaheuristics

	Future work
	References

