Índice

Agrade	ecimientos	PAG:
Dedicatoria		li
Resum	Resumen	
Índice	Índice	
Nome	nclatura.	vii
CAPÍT	ULO 1 Introducción	1
1	Introducción	2
1.1	Antecedentes y motivación	3
1.2	Descripción del problema	3
1.3	Solución propuesta	3
1.4	Objetivos y alcances del proyecto	4
1.4.1	Objetivo general	4
1.4.2	Objetivos específicos	4
1.4.3	Alcances	4
1.5	Metodología y herramientas utilizadas	5
1.6	Resultados obtenidos	5
1.7	Organización del documento	5
CAPIT	ULO 2 Aspectos teóricos	7
2.1	Razones del uso de vapor en la producción de energía interna	8
2.2	Fundamentos de la combustión	8
2.2.1	Combustibles	9
2.2.2	Análisis estequeometrico del proceso de combustión	10
2.3	Generalidades sobre calderas	14
2.3.1	Clasificación de las calderas	15
2.3.2	Calderas pirotubulares	15
2.3.3	Calderas acuatubulares	17
2.3.4	Calderas de tubos rectos inclinados	17
2.3.5	Generadores de vapor propios para centrales termicas.	19
2.3.6	Generadores marino	20
2.3.7	Calderas de vapor con circulacion forzada	20
2.3.8	Calderas que trabajan con calor perdido	21

Índice

2.4	Generalidades sobre aceites como combustibles	22
2.4.1	Composición y obtención de los aceites comestibles	23
2.4.2	Tipos de aceites comestibles	24
CAPIT	ULO 3 Diseño del trabajo experimental	28
3.1	Selección de las variables a ensayar	29
3.1.1	Caracterización del aceite comestible	29
3.1.2	Características químicas de los aceites comestibles vegetales	30
3.2	Normas del ensayo	31
3.2.1	Normas DIN SERIE 51900	31
3.2.2	Normas DIN 1942	34
3.2.3	Determinación del título de un vapor	35
3.3	Equipos e instrumentos	38
3.3.1	Bomba calorimétrica Parr 1108	38
3.3.2	Caldera Wilesco D8	39
3.3.3	Calorímetro de mezcla	43
3.4	Instrumentos y accesorios empleados	43
3.4.1	Manómetro de Bourdón	43
3.4.2	Balanza	44
3.4.3	Termómetro	45
3.4.4	Cronómetro	45
3.4.5	Bureta graduada	46
3.4.6	Accesorios	46
3.5	Planteamiento del problema experimental	46
CAPIT	ULO 4 Presentación de los resultados obtenidos y su discusión	48
4	Presentación de los resultados obtenidos y su discusión	49
4.1	Ensayos relativos a la evaluación de la potencia calorífica	49
4.1.1	Calibración de la bomba calorimétrica	49
4.1.2	Ensayos realizados con los distintos aceites comestibles	51
4.1.3	Resumen de potencias caloríficas aceites comestibles.	57
4.1.4	Discusión de resultados de la evaluación de potencia calorífica	59
4.2	Ensayos realizados a la caldera	60
4.2.1	Operación de caldera Wilesco D8 con aceite comestible	60

Índice	vi

4.2.2	Presentación de los resultados de los ensayos de la caldera	62
4.2.3	Discusión de resultados de los ensayos en la caldera	68
4.2.4	Ensayos de título de vapor	69
4.2.5	Discusión del título de vapor	70
4.2.6	Escalamiento de caldera	71
CONCLUSION		77
CONCLUSION		78
Bibliografía		80
A N I E V C		
ANEXC	A Funcionamiento Bomba calorimétrica Párr. 1108	82
ANEXC	B Ensayos y cálculos caldera Wilesco D8	89
ANEXC	C Normas utilizadas en los ensayos	113
ANEXC	D Memoria de calculo constante calorimétrica	117
ANEXC	Ensayos potencias caloríficas aceites comestibles	120
ANEXC	F Ensayos petróleo diesel	140

Nomenclatura vii

Nomenclatura

símbolo	Descripción	unidad
r _{a/c}	Relación de aire combustible	Kg/kg
m _{aire}	Masa de aire	kg
M _{combustible}	Masa de combustible	kg
С	Constante calorimétrica	J/K
$H_{a,v}$	potencia calorífica superior establecido para el acido benzoico	kJ/kg
Qz	Energía aportada por el alambre	kJ
Δt	Variación de temperatura	k
Q	Producción de vapor	kJ/hr
msv	Masa de vapor	kg
hv	Entalpía de vapor que sale de caldera	kJ/kg
hfa	Entalpía del agua líquida que ingresa a la caldera.	kJ/kg
ηcal:	Rendimiento de caldera	%
N_{L}	Potencia calorífica superior	kJ/kgc
mf:	Masa del combustible	kg
h_{v}	Entalpía del vapor que ingresa al calorímetro	kJ/kg
$m_{\rm w}$	Masa de agua inicial en el calorímetro	kg
m_{v}	Masa de agua vapor que ingresa al calorímetro	kg
Ср	Calor especifico.	kJ/(kg×K)
T_m	Temperatura final de la mezcla de vapor y agua en el calorímetro	k
T _r	Temperatura de referencia (0°C)	k
	Temperatura inicial del agua en el calorímetro	k
T _w	Titulo de vapor	%
X U	Coeficiente de transferencia de calor	kJ/k×kg×m

Nomenclatura viii

AC	Área de calefacción	m²
ΔT_m	Diferencia de temperatura	k
mc_C	Masa de combustible caldera chica	kg
mc g	Masa de combustible caldera grande	kg
mv _C	Masa de vapor caldera chica	kg
mvg	Masa de vapor caldera grande	kg
Uc	Coeficiente de transferencia caldera chica	kJ/k×kg×m
Ug	Coeficiente de transferencia caldera grande	kJ/k×kg×m
$Acale_C$	Área de calefacción caldera chica	m²
Acaleg	Área de calefacción caldera grande	m²