ÍNDICE

		Página
I.	INTRODUCCIÓN	
1.1	Hipótesis	3
1.2	Objetivo general	3
1.3	Objetivos específicos	3
II.	REVISIÓN BIBLIOGRÁFICA	
2.1	Vino tinto	4
2.2	Compuestos fenólicos	5
2.3	Clasificación fenólica	5
2.3.1	Compuestos fenólicos no flavonoides	6
2.3.2	Compuestos fenólicos flavonoides	6
2.3.3	Antocianinas	7
2.3.4	Taninos	8
2.3.5	Polimerización de las procianidinas	. 9
2.3.6	Condensación de antocianinas y taninos	9
2.4	Oxidación en vinos tintos	10
2.5	Efectos del pH en la oxidación	11
2.6	Anhídrido sulfuroso	13
III.	MATERIALES Y MÉTODOS	
3.1	Lugar de los ensayos	15
3.2	Material experimental	
3.3	Preparación de los tratamientos	
3.3.1	Tratamientos	17
3.4	Determinación de la concentración de anhídrido sulfuroso	18
3.5	Determinación de la concentración de compuestos fenólicos totales	. 18
3.6	Determinación de la concentración de compuestos fenólicos por el	
a -	método de precipitación de proteínas	
3.7	Análisis de datos	19
IV.	RESULTADOS	
4.1	Concentración de SO ₂ libre y total	
4.1.1	Concentración de SO ₂ libre a pH 3,5 y 4,0 con aireación inicial	20
4.1.2	Concentración de SO ₂ libre a pH 3,5 y 4,0 con desplazamiento de oxígeno inicial	l 21
4.1.3	Concentración de SO ₂ total a pH 3,5 y 4,0 con aireación inicial	22
4.1.4	Concentración de SO ₂ total a pH 3,5 y 4,0 con desplazamiento del	
	oxígeno inicial	
4.2	Concentración de fenoles totales	
4.2.1	Concentración de fenoles totales a pH 3,5 y 4,0 con aireación inicial	
4.2.2	Concentración de fenoles totales a pH 3,5 y 4,0 con desplazamiento del oxígeno inicial	25
4.3	Concentración de fenoles seleccionados.	26

4.3.1	Concentración de antocianinas a pH 3,5 y 4,0 con aireación inicial	26
4.3.2	Concentración de antocianinas a pH 3,5 y 4,0 con desplazamiento del oxígeno inicial	27
4.3.3	Concentración de pigmentos poliméricos de cadena corta a pH 3,5 y 4,0 con aireación inicial	28
4.3.4	Concentración de pigmentos poliméricos de cadena corta a pH 3,5 y 4,0 con desplazamiento del oxígeno inicial	29
4.3.5	Concentración de pigmentos poliméricos de cadena larga a pH 3,5 y 4,0 con aireación inicial	30
4.3.6	Concentración de pigmentos poliméricos de cadena larga a pH 3,5 y 4,0 con desplazamiento del oxígeno inicial	31
4.3.7	Concentración de taninos a pH 3,5 y 4,0 con aireación inicial	32
4.3.8	Concentración de taninos a pH 3,5 y 4,0 con desplazamiento del oxígeno	33
V.	CONCLUSIONES	34
VI.	BIBLIOGRAFÍA	35
	ANEXO	38

ÍNDICE DE CUADROS

Cuadro 1	Tratamientos correspondientes a los ensayos evaluados	17

ÍNDICE DE FIGURAS

Figura 1	Clasificación de los compuestos fenólicos basada en su estructura química			
Figura 2	Sistema óxido reducción: a) oxidación del ion ferroso a férrico, b) reducción de peróxido de hidrógeno a hidróxido y c) reacción global redox	7		
Figura 3	Mecanismo general de oxidación en vino y reacciones posteriores	8		
Figura 4	Equilibrio fenol fenolato	9		
Figura 5	Formas de disociación del SO ₂ a distinto pH	10		
Figura 6	Concentración de anhídrido sulfuroso libre (mg/L) en vino tinto Cabernet Sauvignon, sometido a dos condiciones de pH (3,5 y 4,0) con aireación inicial	20		
Figura 7	Concentración de anhídrido sulfuroso libre (mg/L) en vino tinto Cabernet Sauvignon, sometido a dos condiciones de pH (3,5 y 4,0) con desplazamiento del oxígeno inicial	21		
Figura 8	Concentración de anhídrido sulfuroso total (mg/L) en vino tinto variedad Cabernet Sauvignon, sometido a dos condiciones de pH (3,5 y 4,0) con aireación inicial	22		
Figura 9	Concentración de anhídrido sulfuroso total (mg/L) en vino tinto Cabernet Sauvignon, sometido a dos condiciones de pH (3,5 y 4,0) con desplazamiento del oxígeno inicial	23		
Figura 10	Concentración de compuestos fenólicos totales en equivalentes de ácido gálico (mg/L) en vino tinto Cabernet Sauvignon, sometido a dos condiciones de pH (3,5 y 4,0) con aireación inicial	24		
Figura 11	Concentración de compuestos fenólicos totales en equivalentes de ácido gálico (mg/L) en vino tinto Cabernet Sauvignon, sometido a dos condiciones de pH (3,5 y 4,0) con desplazamiento del oxígeno inicial	25		
Figura 12	Concentración de antocianinas en equivalentes de Malvidina-3-glucósido (mg/L) en vino tinto Cabernet Sauvignon, sometido a dos condiciones de pH (3,5 y 4,0) con aireación inicial	26		
Figura 13	Concentración de antocianinas en equivalentes de Malvidina-3-glucósido (mg/L) en vino tinto Cabernet Sauvignon, sometido a dos condiciones de pH (3,5 y 4,0) con desplazamiento del oxígeno inicial	27		
Figura 14	Concentración de pigmento polimérico de cadena corta (unidades de absorbancia) en vino tinto Cabernet Sauvignon, sometido a dos condiciones de pH (3.5 v 4.0) con aireación inicial	28		

Figura 15	Concentración de pigmento polimérico de cadena corta (unidades de absorbancia) en vino tinto Cabernet Sauvignon, sometido a dos condiciones de pH (3,5 y 4,0) con desplazamiento del oxígeno inicial	29
Figura 16	Concentración de pigmento polimérico de cadena larga (unidades de absorbancia) en vino tinto Cabernet Sauvignon, sometido a dos condiciones de pH (3,5 y 4,0) con aireación inicial	30
Figura 17	Concentración de pigmento polimérico de cadena larga (unidades de absorbancia) en vino tinto Cabernet Sauvignon, sometido a dos condiciones de pH (3,5 y 4,0) con desplazamiento del oxígeno inicial	31
Figura 18	Concentración de taninos en equivalentes de catequina (mg/L) en vino tinto Cabernet Sauvignon, sometido a dos condiciones de pH (3,5 y 4,0) con aireación inicial	32
Figura 19	Concentración de taninos en equivalentes de catequina (mg/L) en vino tinto Cabernet Sauvignon, sometido a dos condiciones de pH (3,5 y 4,0) con desplazamiento del oxígeno inicial	33