ÍNDICE DE CONTENIDOS

INDICE DE CONTENIDOS	1
INDICE DE TABLAS	4
INDICE DE FIGURAS	5
RESUMEN	7
ABSTRACT	8
1 INTRODUCCIÓN	9
1.1 Importancia del estudio del fruto de Fragaria chiloensis	9
1.2 El fruto de Fragaria chiloensis	10
1.3 La pared celular vegetal y el proceso de maduración	11
1.4 Las Expansinas	17
1.5 Las proteínas expansinas en el fruto de frutilla	20
1.6 Métodos computacionales	22
1.6.1 Modelado de proteínas homologas	22
1.6.2 Minimización de energía	23
1.6.3 Simulaciones de dinámica molecular (SDM)	24
1.6.4 Acoplamiento Molecular (Proteína – Ligando) o "Docking"	25
2 HIPOTESIS	27
3 OBJETIVOS	28

3.1 OBJETIVO GE	NERAL	28
3.2 OBJETIVOS E	SPECIFICOS	28
4 METODOLOGÍA		29
4.1 Obtención de	e secuencias FcEXPA1 y FcEXPA2	29
4.2 Análisis filog chiloensis	jenético de las secuencias de genes expansinas	de <i>F.</i> 29
4.3 Modelamient	o comparativo	30
4.3.1 Ident	ificación de templado	30
4.3.2 Aline	amiento de secuencias blanco con el templado	30
4.3.3 Cons	trucción del modelo	31
4.3.4 Evalu	ación del modelo	31
4.4 Minimizaciór	y equilibrado termodinámico	32
4.5 Acoplamient	o molecular	33
4.6 Simulación r	nolecular de los complejos Proteína – Ligando	34
4.7 Análisis de e	nergía libre de unión Proteína – Ligando median	ite
MM-GBSA		35
5 RESULTADOS		37
5.1 Obtención de	e las secuencias de FcEXPA1 y FcEXPA2	37
5.2 Análisis filog	jenético de distintas alfa expansinas	39
5.3 Modelamient	o comparativo	41
5.3.1 Ident	ificación de templado	41

5.3.2 Alineamiento de secuencia blanco con templado	44
5.3.3 Construcción del modelo	45
5.3.4 Evaluación de las estructuras obtenidas	45
5.3.5 Análisis de los modelos obtenidos	48
5.4 Minimización, equilibrado termodinámico y re-evaluación de la estructuras.	as 50
5.5 Descripción de las estructuras generadas para FcEXPA1 y FcEXPA2.	55
5.6 Acoplamiento molecular	68
5.7 Dinámica molecular de los complejos proteína – ligando	72
5.8 Análisis de energía libre de unión proteína – ligando mediante MM-GBSA	, 85
6 DISCUSIÓN	87
7 CONCLUSIÓN	93
8 IMÁGENES SUPLEMENTARIAS	94
8 REFERENCIAS	95

INDICE DE TABLAS

Tabla 1: Abundancia y tipo de Xiloglucanos en diferentes especies vegetales.	16
Tabla 2. Análisis de identidad de FcEXPA1	42
Tabla 3. Análisis de identidad de FcEXPA2	42
Tabla 4. Evaluación de calidad de templado por Procheck y ProSA.	43
Tabla 5. Valores de puntuación generados por MODELLER para FcEXPA1.	47
Tabla 6. Valores de puntuación generados por MODELLER para FcEXPA2.	47
Tabla 7. Valores de PROCHEK y ProSA de FcEXPA1.	48
Tabla 8. Valores de PROCHEK y ProSA de FcEXPA2.	48
Tabla 9. Residuos que sufrieron un cambio en su estado de protonación	ו en
FcEXPA1.	51
Tabla 10. Residuos que sufrieron un cambio en su estado de protonación	ו en
FcEXPA2.	51
Tabla 11. Energía de interacción entre las diferentes proteínas y los sustratos.	70
Tabla 12. Residuos del complejo FcEXPA1 – GGGGx2 a una distancia mene	os o
igual a 3 A.	77
Tabla 13. Residuos del complejo FcEXPA1 – XXFG ^{x2} a una distancia mene	o ac
igual a 3 A.	78
Tabla 14. Residuos del complejo FcEXPA2 – GGGGx2 a una distancia mene	os o
igual a 3 A.	79
Tabla 15. Residuos del complejo FcEXPA2 – XXFG ^{x2} a una distancia mene	o ac
igual a 3 A.	80
Tabla 16. Resultados de MM-GBSA calculados para FcEXPA1 y sus respect	ivos
sustratos.	86
Tabla 17. Resultados de MM-GBSA calculados para FcEXPA2 y sus respect	tivos
sustratos.	86

INDICE DE FIGURAS

Figura 1. Distintos estadios de maduración del fruto de Fragaria chiloensis.	10
Figura 2. Estudio de la firmeza en distintos estadios de desarrollo del fruto d	e <i>F.</i>
chiloensis.	11
Figura 3. Esquema de la estructura de la pared celular primaria.	13
Figura 4. Estructura de algunos componentes de la pared celular	14
Figura 5. Diagrama del posible mecanismo de acción de las expansinas.	16
Figura 6. Esquema de la estructura proteica de las distintas familias	de
expansinas: EXPA, EXPB, EXLA y EXLB.	18
Figura 7. Estructura de la proteína β expansina EXP1.	19
Figura 8. Niveles de expresión relativos de los genes codificantes para	las
distintas expansinas, tanto en <i>F.chiloensis</i> como en <i>F. ananassa</i> .	21
Figura 9. Energía potencial de un sistema en dos o tres dimensiones.	24
Figura 10. Secuencia nucleotídica y aminoacídica de FcEXPA1 y FcEXPA2	38
Figura 11. Análisis filogenético	39
Figura 12. Evaluación de la calidad del templado.	43
Figura 13. Alineamiento entre FcEXPA1 y el templado 2HCZ	44
Figura 14. Alineamiento entre FcEXPA2 y el templado 2HCZ	45
Figura 15. Modelos de las estructuras tridimensionales	49
Figura 16. Gráfico de RMSD durante la trayectoria de la simulación molecula	r de
ambas proteínas.	51
Figura 17. Gráfico de Ramachandran para ambas proteínas.	52
Figura 18. Gráfico de la calidad del modelo por el programa ProSA de am	ıbas
proteínas	53
Figura 19. Grafico energía ProSA.	54
Figura 20. Ilustración de los diferentes dominios de FcEXPA1 y FcEXPA2	56
Figura 21. Loop de unión entre los dominios (Linker) de FcEXPA1 y FcEXPA2	57
Figura 22. Hendidura en FcEXPA1 y FcEXPA2	58
Figura 23. Puentes disulfuros de FcEXPA1 y FcEXPA2	59

Figura 24. Dominio 1 FcEXPA1	61
Figura 25. Sitio activo FcEXPA1.	62
Figura 26. Residuos involucrados en el posicionamiento del ligando en am	bos
dominios de FcEXPA1.	63
Figura 27. Dominio 1 FcEXPA2	64
Figura 28. Sitio Activo FcEXPA2	65
Figura 29. Residuos involucrados en el posicionamiento del ligando en am	bos
dominios de FcEXPA2.	66
Figura 30. Representación del dominio 2 de FcEXPA1 y FcEXPA2	67
Figura 31. Posicionamiento de los diferentes sustratos con las diferer	ntes
proteínas	70
Figura 32. Residuos importantes en FcEXPA1	71
Figura 33. Residuos importantes en FcEXPA2	71
Figura 34. Gráfico RMSD de la trayectoria de los complejos FcEXPA1	73
Figura 34. Gráfico RMSD de la trayectoria de los complejos FcEXPA2	74
Figura 35. Gráfico de trayectoria de los complejos de FcEXPA2.	74
Figura 36. Gráficos de RMSD de los ligandos.	75
Figura 37. Residuos involucrados en la formación de puentes de Hidrógeno	en
FcEXPA1-GGGG ^{x2}	80
Figura 38. Residuos involucrados en la formación de puentes de Hidrógeno	en
FcEXPA1-XXFG ^{x2}	81
Figura 39. Residuos involucrados en la formación de puentes de Hidrógeno	en
FcEXPA2-GGGG ^{x2}	82
Figura 40. Residuos involucrados en la formación de puentes de Hidrógeno	en
FcEXPA2-XXFG ^{x2}	83
Figura 41. Gráfico de energía total calculada durante la simulación molecular p	ara
los diferentes complejos.	84