ÍNDICE GENERAL

	Página
ÍNDICE GENERAL	i
ÍNDICE DE FIGURAS	iv
ÍNDICE DE TABLAS	vii
INDICE DE GRÁFICOS	viii
RESUMEN	ix
SUMMARY	x
I. INTRODUCCIÓN	1
I.1 Consideraciones Generales	1
I.1.1 Flavonoides	1
I.2 Biosíntesis de Flavonoides	2
I.3 Acumulación de flavonoides	5
I.4 Transporte y almacenaje de flavonoides	5
I.4.1 Tráfico de flavonoides mediado por vesículas	6
I.4.2 Tráfico de flavonoides mediado por proteínas	6
I.5 GST: Glutation S-Transferasa	9
I.5.1 GSTs en plantas	11
I.5.2 Estructura de las proteínas GST	12
I.5.3 El papel de TRANSPARENT TESTA 19	16
1.5.4 Estudio de VvGST3, un Glutation S-Transferasa de V. vinifera como putativo	18
transportador de flavonoides	
I.6 Hipótesis	20
I.7 Objetivo General	22
I.7.1 Objetivos Específicos	22
II. MATERIALES Y METODOS	23
II.1 Análisis Bioinformático	23
II.1.1 Análisis de la secuencia de VvGST3	23
II.1.2 Construcción del modelo estructural tridimensional de las proteínas VvGST3 de	25
V. vinifera y TT19 de A. thaliana	
II.1.3 Optimización de la estructura de VvGST3 y TT19 mediante minimización	26
energética y simulación de dinámica molecular.	

i

II.1.3.1 Evaluación de modelos estructurales generados.	26
II.1.4 Análisis de los posibles sitios de unión a los flavonoides cianidin-3-O-glucósido y	27
epicatequin-3'-O-glucósido en VvGST3 y TT19.	
II.2 Biología Molecular	29
II.2.1 Materiales y métodos generales	29
II.2.1.1 Amplificación de fragmentos de DNA mediante la reacción en cadena de la	29
polimerasa (PCR)	
II.2.1.2 Electroforesis en gel de agarosa.	29
II.2.1.3 Medios utilizados para cultivo de bacterias y tejido vegetal	30
II.2.1.4 Utilización de antibióticos en los medios de cultivos	30
II.2.2 Correlación del perfil transcripcional del gen VvGST3 de distintos tejidos y	31
estados de desarrollo de V. vinifera con los periodos y lugares de síntesis de	
flavonoides.	
II.2.2.1 Material vegetal	31
II.2.2.2 Aislamiento y purificación de acido ribonucleico (ARN) total y síntesis de DNA	31
complementario (cDNA)	
II.2.2.3 Análisis de la expresión génica de VvGST3	32
II.2.3 Evaluación de la capacidad del gen VvGST3 para complementar la función del	33
gen tt19, como transportador de flavonoides en mutantes de A. thaliana	
II.2.3.1 Generación de construcciones genéticas para transformación estable	33
II.2.3.2 Obtención de plantas transgénicas de A. thaliana.	34
II.2.3.4 Evaluación de la capacidad en plantas transgénicas de A. thaliana para	36
acumular flavonoides	
III. RESULTADOS	37
III.1 Resultados Bioinformáticos	37
III.1.1 Identificación y análisis de la secuencia VvGST3.	37
III.1.2 Modelo estructural tridimensional de las proteínas VvGST3 de V. vinifera y	41
TT19 de <i>A. thaliana</i> .	
III.1.3 Estructuras de VvGST3 y TT19 optimizadas mediante minimización energética	48
y simulación de dinámica molecular.	
III.1.4 Modos de unión de los flavonoides cianidin-3-O-glucósido y epicatequin-3'-O-	56
glucósido en VvGST3 y TT19.	
III.1.5 Rol de Trp203 y Trp205 en la unión de precursores de proantocianidinas	63
III.2 Parte Biología Molecular Experimental	67
III.2.1 Análisis del perfil de expresión de VvGST3 durante el desarrollo de V. vinifera	67

ii

cv. Carménère

III.2.2 El gen VvGST3 aislado desde el cv Carménère complementa parcialmente el	71
fenotipo de la mutante A. thaliana tt19-1	

IV. DISCUSIÓN	75
V. CONCLUSIONES	82
VI. BIBLIOGRAFÍA	83
VII. ANEXOS	91

INDICE DE FIGURAS

	Página
Figura 1. Ruta biosíntesis de flavonoides simplificada	2
Figura 2. Tejidos de acumulación de flavonoides en el fruto de la vid	4
Figura 3. Períodos de producción de taninos y antocianinas durante el desarrollo de bayas de uva	4
Figura 4. Modelos de transporte de flavonoides para su depósito en vacuolas	8
Figura 5. Estructura 2D de A cianidina-3-O-glucósido (Cy3G) y B epicatequina-3'- O-glucósido (E3'G)	8
Figura 6. Conjugación de una molécula de glutation	10
Figura 7. Representación de cristales de los principales grupos GST	10
Figura 8. Estructura general de una proteína GST (PDB id: 1GNW)	13
Figura 9. Estructura del dominio N-terminal de una proteína GST (PDB id: 1GWC)	14
Figura 10. Identificación de sitios activos y de unión a ligandos (PDB id: 1GWC)	14
Figura 11. Residuos funcionales inferidos para la unión de antocianinas	15
Figura 12. Alineamientos entre TT19 (también denominado TT19-1) y su alelo TT19-4	17
Figura 13. Comparación de fenotipos presentado por la complementación funcional de plantas mutantes <i>tt19</i> de <i>A. thaliana</i> con <i>tt19-4</i>	17
Figura 14. Posible papel funcional de VvGST3	19
Figura 15. Árbol filogenético de proteínas Glutation S-Transferasa.	38
Figura 16. Alineamiento múltiple de secuencias de Glutation S-Transferasas involucradas en el transporte de flavonoides	40
Figura 17. Predicción de la estructura secundaria de TT19 y VvGST3	42
Figura 18. Estructura tridimensional de la proteína VvGST3	44
Figura 19. Estructura tridimensional de la proteína TT19	44
Figura 20. Alineamiento estructural de la proteína de referencia 1AW9 con VvGST3 y TT19	45
Figura 21. Gráficos de Ramachandran obtenidos de PROCHECK	45

Figura 22. Gráficos de ProSA. Evaluación de la calidad estructural para los modelos protéicos.	47
Figura 23. Sistemas tridimensionales de VvGST3 y TT19	48
Figura 24. Estructura tridimensional final de la proteína VvGST3	52
Figura 25. Estructura tridimensional final de la proteína TT19	52
Figura 26. Gráficos de Ramachandran obtenidos de PROCHECK para modelo final de VvGST3 y TT19	54
Figura 27. Gráficos de ProSA. Evaluación de la calidad estructural para los modelos protéicos.	55
Figura 28. Aminoácidos que participarían en la unión de antocianinas (Sito A) en la proteína TT19	57
Figura 29. Aminoácidos que participarían en la unión de PAs (Sitio P) en la proteína TT19	57
Figura 30. Aminoácidos que participarían en la unión de antocianinas (Sitio A) en la proteína VvGST3	58
Figura 31. Aminoácidos que participarían en primera instancia en la unión de PAs (Sitio P) en la proteína VvGST3	58
Figura 32. Estructura de Flavonoides	60
Figura 33. Mejores formas de unión de flavonoides en VvGST3	61
Figura 34. Mejores formas de unión de flavonoides en TT19	62
Figura 35. Mutaciones realizadas en VvGST3 y TT19	65
Figura 36. Mejores formas de unión de flavonoides en el "sitio P" de VvGST3_W203L y TT19_W205L	66
Figura 37. Calidad de RNA	68
Figura 38. Expresión de VvGST3 en diferentes tejidos y estadios de desarrollo de la baya en <i>V. vinifera</i> cv. Carménère	69
Figura 39. Expresión de VvGST3 en diferentes tejidos y estadios de desarrollo de la baya en <i>V. vinifera</i> cv. Carménère, sin la presencia de semillas	70
Figura 40. Aislamiento del gen VvGST3 mediante amplificación por PCR	71
Figura 41. Identificación líneas transgénicas de A. thaliana	72
Figura 42. Tinción de Semillas con DMACA	73

Figura 43. Inducción de acumulación de antocianinas en plántulas mutantes y WT de *A. thaliana*

INDICE DE TABLAS

	Página
Tabla 1. Accesiones GenBank de las secuencias utilizadas en la construcción del árbol filogenético	24
Tabla 2. Secuencia oligonucleótidos partidores de PCR y PCR en tiempo real	34
Tabla 3. Secuencia aminoacídica predicha de VvGST3	37
Tabla 4.Análisis de similitud local coincidentes con PSI-PRED y BLASTp paraVvGST3 y TT19	42
Tabla 5. Valores porcentuales de aminoácidos presentes en las regiones del gráfico de Ramachandran	46
Tabla 6. Valores porcentuales de aminoácidos presentes en las regiones del gráficode Ramachandran de PROCHECK para la estructura de proteínas minimizadas	50
Tabla 7. Valores porcentuales de aminoácidos presentes en las regiones del gráfico de Ramachandran de PROCHECK para la estructura final de las proteínas	54
Tabla 8. Mejores energías de las formas de unión entre proteína-ligando para los sitios A y P	60
Tabla 9. Mejor energía de la formas de unión entre proteína mutada y ligando	65

INDICE DE GRÁFICOS

	Página
Gráfico 1. Energía Total versus pasos de minimización	49
Gráfico 2. Energía total versus Tiempo dinámica	51
Gráfico 3. Energía total versus Tiempo dinámica proteínas mutadas.	64