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Abstract

We present a simple implementation of a token-based distributed mutual exclusion algorithm
for multithreaded systems. Several per-node requests could be issued by threads running at
each node. Our algorithm relies on special-purpose alien threads running at host processors on
behalf of threads running at other processors. The algorithm uses a tree to route requests for the
token. We present a performance simulation study comparing two versions of our algorithm with
a known algorithm based on path reversal on trees. Results show that our algorithm performs
very well under a high load of requests while obtaining acceptable performance under a light
load.

Keywords: Distributed Mutual Exclusion, Multithreading, Parallel Programming, Concurrent

Programming, Distributed Shared Memory.

1 Introduction

Mutual exclusion aims to provide synchronized access to shared resources ensuring that, at any time,
at most one process can be executing in its critical section. Distributed mutual exclusion algorithms
focus on mutual exclusion on distributed environments lacking shared memory. Several algorithms
address the distributed mutual exclusion problem for systems where only one process is running at
each processor. Multithreaded distributed systems allow the existence of several threads of execution
within each distributed process. Thus, there is a need to provide mutual exclusion to a large number
of distributed threads. We are particularly interested in Distributed Shared Memory systems [6]
with support for multithreading and thread migration. In such systems, multithreading enhances
program structure and improves performance by overlapping computation and communication [15].

In this work, we present an algorithm for distributed mutual exclusion in a multithreaded system.
The algorithm is token-based, and it uses a tree to route requests issued to acquire the token. We
rely on special-purpose alien threads running at host processors on behalf of threads running at
other processors.

When a thread asks for permission to enter its critical section, if the token is not present at the
processor it is running at, a remote alien thread is activated in order to obtain the token and send
it to the requesting processor. Alien threads behave just like ordinary threads, and must compete
for the token with other user threads. Thus, our algorithm is simple but correct.



We performed a simulation study comparing two versions of our algorithm with a previously pro-
posed algorithm based on path reversal on trees. This algorithm is, to the best of our knowledge, the
only documented implementation addressing the same problem. Results obtained from the simula-
tion are encouraging. Our algorithm performs very well under high load conditions, outperforming
the other proposal as the number of threads per node increases.

Our algorithm was successfully implemented on DSM-PEPE, a multithreaded distributed system
with support for thread migration [8].

2 The algorithm

2.1 System model

The system is a loosely-coupled network of computers, consisting of n processors: p1, p2, ..., pn.
At any time, at each processor pi, there are mi threads running. Threads are allowed to migrate
according to some system policy, for instance, pursuing load balancing or minimal message exchange.

Processors communicate through message passing. We assume that message delivery is guaranteed
by the network. We also assume that two messages issued at one processor and addressed to the
same node are received in the same order at the destination. This is the usual behavior of switched
local area networks, where there is only one possible route between each pair of computers.

A thread wishing to enter its critical section must obtain permission by calling Acquire(). The
thread could be delayed until mutual exclusion can be guaranteed. Once the thread leaves the
critical section, it must notify the system by calling Release(). Mutual exclusion must be ensured
between the call to Acquire() and the call to Release().

2.2 Brief description

Our algorithm is token-based. A thread wishing to enter its critical section must obtain a single
system-wide token. Uniqueness of the token guarantees the mutual exclusion [4]. At the higher
level, ownership of the token is not granted directly to threads but to processors. Once a processor
owns the token, threads running at that processor can compete for it. Requests issued at each
processor are stored in a local queue owned by the processor. Ownership of the token is granted to
one of the processors during initialization. For the remaining processors a unique path must exist to
allow them to reach the actual owner of the token. This is accomplished through a chain of probable
owners, building up a tree rooted at the first owner.

Requests made by threads running at the processor currently owning the token are serialized and
served according to their arrival time. A request issued by a thread running at a processor not
owning the token involves sending a request to the probable owner. Our algorithm accomplished
this task, by signaling a special-purpose thread running at the probable owner of the token.

At any processor, there are n− 1 alien threads, each acting on behalf of one of the remaining n− 1
processors in the system. Alien threads behave just like ordinary threads, but they are blocked most
of the time. An alien thread at processor pi is signaled when some thread at the home processor
–that is, the processor for which the alien thread is working on behalf of– is requiring the token,
and it is presumed that the token is held by processor pi, that is, the probable owner at the home
processor is set to pi. The woken alien thread asks for the token at its host processor. Then, once
the token is granted, the alien thread sends the token to the processor it is representing.
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Figure 1: Behavior of the algorithm when servicing several requests

Note that it is possible for a woken alien thread to find out that the token is no longer on its host
processor. When this situation occurs, the alien thread acts like an ordinary thread requesting the
token. The alien thread signals the alien thread on the processor where the token apparently went
to, that is, the probable owner on its host processor. This scenario could appear several times,
until the processor currently holding the token is reached. This kind of forwarding resembles the
algorithm described by Raymond for distributed mutual exclusion of single-threaded processors [12].

Figure 1 shows the behavior of our algorithms in a system with 3 nodes. Initially, node 1 owns
the token –represented as a filled circle– and several local threads are blocked at that node, each
waiting to enter its critical section (Figure 1a). Note that node 1, the owner of the token, is at
the root of the tree used to route the requests. At this moment, several requests are issued from
threads running at node 3. The first of these requests produces a signal to an alien thread on node
2, to wake up and act on behalf of node 3 (Figure 1b). However, since the token is not present at 2,
the recently woken alien thread blocks, producing a signal to an alien thread on node 1, to wake up
and act on behalf of node 2. This alien thread is enqueued after the local threads that previously
issued requests at node 1. Note that the request made by a thread running at node 3 produced two
requests at remote nodes, issued by alien threads. After that, some threads issued new requests at
nodes 1 and 2, producing their local enqueueing (Figure 1c). At this point it is important to note
the behavior of the alien threads currently active in the system. An alien thread is waiting for the
token at node 1, the current owner of the token, on behalf of 2, and another alien thread is waiting
for the token at node 2, on behalf of 3. The thread that issued the original request is waiting for
the token at node 3. A node only sees a queue of requests, some issued by local threads and some
issued by alien threads. Eventually, the alien thread running at node 1 on behalf of 2 obtains the
token, and sends it to node 2. Since the queue was not empty at this time, that is, there are pending
requests at node 1, an alien thread on node 2 is signaled to bring the token back to node 1. At the
head of the queue at node 2 was the alien thread that acts on behalf of node 3, so it sends the token
to node 3, and an alien thread on node 3 is signaled to bring the token back to node 2. Note that,
at node 2 there are several pending requests, including one that will bring the token back to node
1 (Figure 1d). Eventually, the token returns to node 2 (Figure 1e) and to node 1 (Figure 1f).



2.3 Detailed description

Each processor must hold the following information:

• probOwner: process identifier –pid– of the processor last known as the token owner. Initially
set in such a way that there is a single path, following the probOwners chain, from each node
to the initial owner of the token. The first owner sets probOwner to its pid.

• tokenRequested: true if there are pending requests for the token issued from this processor,
i.e., a request for the token has been already sent. Initially false at every processor.

• numLocal: number of requests for the token that have been issued locally; initially 0 at every
processor. Recall that only the first request actually makes an alien thread to be signaled.

Local mutual exclusion for the operations showed below is mandatory. However it has been omitted
intentionally to illustrate the solution more clearly.

Semantics of the wait and signal operations are consistent with the semantics of the operations on
condition variables. Signals across processors involve sending a message to the target processor.

A thread acquiring the token must execute:

Acquire() {

numLocal++;

if (probOwner != pid) && (! tokenRequested) {

// Not owner and not previously requested => Request token

signal(alien thread on probOwner);

tokenRequested = true; // to avoid multiple requests

wait(for signal from the alien thread);

probOwner = pid; // processor becomes owner

tokenRequested = false;

}

else {

// Processor owns token, or token has been requested already

if (numLocal > 1) {

wait(for signal from another local thread);

}

}

}

If the token is not currently held by the processor (that is, probOwner != pid), it must be requested
to the probable owner. Requesting the token involves signaling the alien thread on the probable
owner to act on behalf of the issuing processor. The acquiring thread blocks waiting the token to
arrive. This condition occurs when the alien thread signals back its host processor. However, if
some other thread has previously called Acquire, we must prevent multiple requests to be issued.

If the token is held by the processor, or it has been requested already, there is no need for remote
requests. The thread must wait for some other local thread to release the token. If the token is
held but free (that is, numLocal == 1) the thread is allowed to enter its critical section.



A thread releasing the token must execute:

Release() {

numLocal--;

signal(local thread waiting for the token);

}

Note that the thread being signaled could be a user thread or an alien thread.

The alien thread executing on processor host on behalf of processor home must execute:

alienThread(host_pid, home_pid) {

while(true) {

wait(for signal from home processor); // stay idle until signaled

Acquire(); // acquire token on host processor

signal(thread waiting for the token on the home processor) // steal token

probOwner = home_pid; // update host-processor’s probOwner

numLocal--;

if (numLocal > 0) {

// Request the token on behalf of host processor

tokenRequested = true; // to avoid multiple requests

signal(alien thread on home processor on behalf of host);

}

}

}

An alien thread waits until signaled from its home processor. When this occurs, the alien thread
acquires the token, competing with local threads on the host processor, as well as with other alien
threads trying to get the token on behalf of their homes.

Once an alien thread succeeded on acquiring the token, it signals its home processor, allowing a
remote waiting thread to resume under mutual exclusion. It is possible to have additional threads
left on the local queue when an alien thread acquires the token delivering it to its home processor.
If this happens, the alien thread requests the token before turning idle. This is accomplished by
signaling the alien thread that represents its host on its home processor.

A simple improvement to the algorithm presented involves piggybacking this request on the same
signaling message that delivers the token.

The behavior of an alien thread holding the token is slightly different from the behavior of a user
thread. A user thread is expected to release the token once it leaves the critical section. However,
an alien thread does not release the token, but delivers it directly to another thread at his home
processor instead.

2.4 A variant on the proposed algorithm

A signaled alien thread must forward the request when the token is no longer held at its host
processor. This is done by signaling the alien thread on the probable owner, on behalf of the host
processor. This approach enforces the token to follow exactly the same path previously followed by
the requests.



This behavior is desirable under high requests load, because there always will be pending requests
on the returning path of the token, avoiding the exchange of extra messages. However, under a
light requests load, the token could be sent directly to the processor that issued the first request,
avoiding the extra steps produced by the forwarding. Only the code executed by the alien threads
must be modified in order to implement this variant:

alienThread(host_pid, home_pid) {

while(true) {

wait(for signal from home processor); // stay idle until signaled

if ((probOwner != host_pid) && (numLocal == 0)) {

signal(alien thread on behalf of home, on host’s probOwner);

}

else {

// Behaves like the original alien thread

Acquire(); // acquire token on host processor

signal(thread waiting for the token on the home processor) // steal token

probOwner = home_pid; // update host-processor’s probOwner

numLocal--;

if (numLocal > 0) {

// Request the token on behalf of host processor

tokenRequested = true; // to avoid multiple requests

signal(alien thread on home processor on behalf of host);

}

}

}

}

Instead of simply forwarding requests, the improved alien thread first checks if there are local
requests at its host processor that justify acquiring the token. Otherwise, it signals an alien thread
on behalf of its home processor, avoiding the passing of the token across the host processor.

Figure 2 shows the behavior of the modified algorithm for the same requests sequence used in the
example of the original algorithm in Section 2.2. Note that, when the first request by a thread
running at node 3 is issued, the alien thread at node 2 does not remain active because the queue
at node 2 is empty. It just forwards the signal to an alien thread at node 1, to wake up and act on
behalf of node 3 instead (Figure 2b). Eventually, this alien thread obtains the token, and sends it
directly to node 3 (Figure 2d).

Note that, the path followed by the token back to the requester node is not necessarily the same
path previously followed by the request on its way to the owner of the token. This is due to the fact
that, as opposed to the original algorithm, several alien threads in the request path just forward
the request, changing the topology of the tree.
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Figure 2: Behavior of the modified algorithm when servicing several requests

3 Proof outline

A mutual exclusion algorithm must satisfy several conditions. The following is an outline of the
proof of correctness for three of these conditions, considering the original algorithm.

Mutual exclusion: It must be assured that, at any time, at most one thread can be executing
in its critical section. Our algorithm is token-based: there is a single system-wide token, owned by
the node having probOwner == pid. This condition is enforced during initialization. A thread asks
for the token by executing Acquire and could be delayed on two conditions: (1) when the token is
currently held by its host node but it is assigned to another thread, or (2) when the token is not
locally present at the time. Either way, the thread is allowed to continue executing in its critical
section only when the thread currently holding the token relinquished it by executing Release, or
when an alien thread signals the blocked thread remotely. In the former, it is straightforward to
verify that mutual exclusion is assured. In the latter, the signaling alien thread previously obtained
the mutual exclusion by executing Acquire on its host processor. Since an alien thread does not
have a critical section, it relinquishes the mutual exclusion on behalf of the thread that made the
request on its home processor. This way, mutual exclusion among threads is assured.

Deadlock freedom: It is easy to verify that a deadlock can not occur under some reasonable
restrictions. For a deadlock to occur there must be a circular-wait condition involving two or more
threads in the system. Assuming that a thread executing in its critical section is not allowed to
execute Acquire again, this condition will never occur.

Starvation freedom: If we assume the use of a fair policy for serving local requests at each node
starvation will not occur. Recall that we have a single path from each node to the node currently
holding the token. Note that a request issued at a node not owning the token results in an alien
thread being queued at the node currently owning the token. If the local service policy is fair, the
alien thread eventually obtains the token and allows the thread it is acting on behalf of, to enter
its critical section.



4 Performance

Analytic studies of distributed mutual exclusion algorithms are hard to perform, due to the rapid
growth of the cardinality of the state space as the number of nodes increases [3]. In multithreaded
systems, the size of the state space grows even faster. For this reason, we choose a simulation
approach to study the performance of our proposal.

4.1 Simulation model

We use a simulation model based on similar studies [3], [5]. We assume that critical section requests
arrive at each node according to a Poisson process with parameter λ. Thus, the time elapsed
between critical section requests behaves according to an exponential distribution. We assume that,
at every node, requests are made by randomly-chosen user threads. It is important to note that
the simulation process remains under Poisson behavior as long as any running –not waiting– local
thread exists in a node. When all the threads running at a node are waiting to enter to its critical
section, the process stops until the first local thread completes its critical section.

The λ parameter will give us a notion of the load of the entire system. The time taken by a thread to
execute its critical section is modeled as a constant C. The message propagation delay is a constant
M multiplied by a random number having a uniform distribution between 0 and 1.

We are interested in two main measures:

• Messages per entry: total number of messages exchanged divided by the total number of
critical sections completed by user threads. That is, an average of the number of messages
exchanged when a thread wants to enter its critical section.

• Waiting time per entry: an average of the total time spent by a thread waiting for the
permission to access its critical section, since the request is made until the permission is
granted.

To obtain statistically reliable results we made long-time simulations executing 100, 000 critical
section entries. On each experiment we use N = 31 nodes, because we have a binary complete tree
for the initial state. We simulate a variable number of threads per node. The parameter λ takes
values in the [0, 1] interval. The parameter M was taken as 0.1 and the parameter C as 0.01. The
values of the parameters chosen are consistent with those in similar studies [3],[5].

4.2 Results

Figures 3 through 5 show the results of the simulations for the two versions of our algorithm as
well as the algorithm proposed by Mueller [9], using 1, 5 and 10 threads per node. All simulations
were run using the improved alien thread algorithm that supports piggybacking. In Figure 3 there
is a single thread per node. In this case, the first implementation of our algorithm resembles the
algorithm by Raymond [12]. Obtained results are consistent with that fact [5].

Under a light load, the second version of our algorithm requires fewer messages than the first one,
because the token is sent from the releaser node to the requester directly. The alien thread that
was waiting for the token at the releaser node, acts on behalf of the requester node. The first
implementation enforces the token to travel along the tree structure to reach the requester node.
This is so because several alien threads need to be signaled in the path previously followed by the
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Figure 3: Performance comparison of the 3 algorithms with a single thread per node.
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Figure 4: Performance comparison of the 3 algorithms with 5 threads per node.

requests. The algorithm proposed by Mueller has the best comparative performance under a light
load, considering the number of messages exchanged. This is due to the aggressive path compression
technique, characteristic of the path reversal approach [10].

Considering the waiting time, the second version of our algorithm behaves better than the first one
under all loads. Also concerning waiting time, the algorithm proposed by Mueller outperforms the
other two.

Under a high load, both versions of our algorithm need almost the same number of messages per
critical section. When the first alien thread associated to a request is signaled, it is most likely that
the token was already requested on the host node. This will make both versions of the algorithm
behave the same way. This situation can be easily observed in the code of the alien thread: both
versions will execute the same code under high load conditions. This is also the cause of the very
small number of messages exchanged per critical section under high loads. Both implementations
of the alien thread algorithm outperform Mueller’s algorithm.

When we turn to multithreaded scenarios (Figures 4 and 5) the relative behavior among the two
versions of our algorithm remains the same. Moreover, the waiting time remains almost identical,
for every number of threads per node. Besides, an important decrease in the number of messages
exchanged per critical section entry is achieved under high loads as the number of per-node threads
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Figure 5: Performance comparison of the 3 algorithms with 10 threads per node.

increases. Once a request has been sent from a node –that is, an alien thread has been signaled
on behalf of that node–, subsequent requests issued by threads on the home node do not involve
the sending of additional messages. Thus, most of the requests issued by threads wishing to enter
the critical section will be served without message exchange. The algorithm proposed by Mueller
does not show any of these behaviors. The number of messages exchanged does not change signifi-
cantly as the number of threads per node increases. Waiting time increases abruptly as the system
load increases. The growing rate of the waiting time in the Mueller’s algorithm, also increases
as the number of threads per node increases. His algorithm is very sensitive to load growth on
multithreaded scenarios.

The second version of the alien thread algorithm outperforms the initial version in all aspects. The
algorithm proposed by Mueller showed better performance under a light load. Under high loads,
the alien thread algorithm showed better results.

5 Related work

Several distributed mutual exclusion algorithms have been proposed. They can be classified as
permission-based or token-based [13]. We focus our study on distributed algorithms, excluding
those algorithms that rely on a central coordinator.

When a permission-based algorithm is used, a process wishing to enter its critical section must
obtain permission from a subset of processes previously defined. A process receiving such a request
gives its permission immediately if it is not interested in entering its critical section. Otherwise,
some policy must be used to resolve the conflicting requests. The algorithms proposed by Ricart
and Agrawala [14], by Maekawa [7], and by Agrawala and El Abbadi [1] fall into this category.

Token-based algorithms rely on a unique token which must be acquired by a process wishing to
enter its critical section. The token could be traveling from one process to another continuously or
could be obtained by sending a request. The algorithms proposed by Raymond [12], by Neilsen and
Mizuno [11], by Banerjee and Chrysanthis [2], and by Naimi, et al. [10] fall into this category.

Distributed mutual exclusion for multithreaded environments has not been studied extensively.
The design and implementation of distributed synchronization primitives are presented by Mueller,
focusing on the impact of multithreading on synchronization [9]. Distributed mutual exclusion is
based on a token-passing mechanism based on the algorithm described by Naimi, et al. [10].



6 Conclusions

We presented a simple implementation of a token-based algorithm providing mutual exclusion to
distributed threads running on a loosely-coupled system. Our work is based on the idea of special-
purpose threads, called alien threads, that work on behalf of other processors, every time the token
is needed. This mechanism has been successfully implemented on a Distributed Shared Memory
system supporting thread migration.

We developed two versions of the algorithm and compare them to a known implementation of
another algorithm, targeting to the same problem. A simulation of performance shows that both of
our algorithms outperforms the other implementation under high load conditions. The difference
increases as the number of threads per node increases. Under a light load, our algorithms still
perform within reasonable limits.

The first version of our algorithm, limited to a single user thread per node, behaves just like a well-
known single-threaded distributed mutual exclusion algorithm [12]. The third algorithm considered
in our study [9], was originally conceived as an extension of another single-threaded algorithm
based on path reversal on trees [10]. Our intention is to extend the study to several single-threaded
algorithms for distributed mutual exclusion, exploring the feasibility of extend them using the same
ideas used to develop the alien-threads algorithm.
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