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AdS waves and pp-waves can only be supported by pure radiation fields, for which

the only nonvanishing component of the energy-momentum tensor is the energy

density along the retarded time. We show that the nonminimal coupling of self-

gravitating scalar fields to the higher-dimensional versions of these exact gravita-

tional waves can be done consistently. In both cases, the resulting pure radiation

constraints completely fix the scalar field dependence and the form of the allowed

self-interactions. More significantly, we establish that the two sets of pure radia-

tion constraints are conformally related for any nonminimal coupling, in spite of the

fact that the involved gravitational fields are not necessarily related. In this corre-

spondence, the potential supporting the AdS waves emerges from the self-interaction

associated to the pp-waves and a self-dual condition naturally satisfied by the pp-

wave scalar fields.

PACS numbers: 04.50.+h, 04.30.Db

I. INTRODUCTION

In the current literature, there exists a wide class of examples for which the use of
conformal symmetries or techniques has been useful to understand and to solve very specific
problems. For example, conformal transformations of metrics can be used as a mathematical
tool to map the equations of motion of physical systems into equivalently equations that are
more simple to analyze. From the physical perspective this transformation entails a change
of frame, and in diverse contexts some quantities only acquire a clear physical interpretation
in definite frames. In this spirit, the derivation of the Bekenstein black hole provided an
interesting illustration [1]. Certainly, in this case the mapping has been operated between a
conformal scalar field and a minimally coupled one, and has permitted to generate a black
hole solution for the conformal theory from the singular solution of the minimal scalar field
theory. It is also natural to ask wether spacetime metrics which are conformally related
may share some properties, beyond those generated from their common causal structure for
regular conformal factors. For example, in arbitrary dimension D the Siklos spacetimes [2],
which are exact gravitational waves traveling along AdSD [3],1 can be defined as a conformal
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1 See Refs. [4, 5, 6, 7] for the pioneering works studying the propagation of exact gravitational waves in

presence of a cosmological constant, for a review on this subject see Ref. [8].
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transformation of a pp-wave background in the following way

ds2 =
l2

y2

[

−F (u, y, xi)du2 − 2dudv + dy2 + δijdxidxj
]

, (1)

where i = 1, . . . , D − 3. In this case, the Einstein tensor of the above AdS wave metric
Gαβ and the one associated with the pp-wave metric inside of the square bracket, which we
denote by Ḡαβ, satisfy

Gαβ + Λgαβ ∝ kαkβ, Ḡαβ ∝ kαkβ, (2)

where kµ∂µ = ∂v is a common null Killing vector and Λ = −(D − 2)(D − 1)/(2l2). These
properties (2) imply interesting consequences if one considers the coupling of matter sources
to these gravitational waves. Indeed, in both cases they indicate that the waves can only
be supported by sources behaving as pure radiation fields [9], i.e. configurations for which
all the components of the energy-momentum tensor vanish except the energy density along
the retarded time u. For a generic matter field this condition imposes the fulfillment of
pure radiations constraints, consisting in demanding the vanishing of all the components
of the energy-momentum tensor except the quoted energy density. These conditions are
strong requirements on the possible choices of matter sources to consider. Recently, we have
been concerned by this problem in three dimensions as we were interested on the generation
of exact gravitational waves propagating on flat space [10, 11, 12, 13] and AdS space [14],
respectively. We have shown that self-gravitating scalar fields nonminimally coupled to these
gravitational waves do not yield to inconsistencies, instead the pure radiations constraints
have nontrivial solutions in these cases characterized by various interesting properties due
to this particular coupling [14]. Among these curiosities, we have shown that the three-
dimensional scalar source supporting an AdS wave [14] and the one compatible with the
pp-wave [12] are conformally related in spite of the fact that their involved backgrounds are
not necessarily related. In other words, this means that in both situations, the source is
independent of the structural metric function F of Eq. (1), and in some sense is only sensitive
to the general form of the spacetime metric. At our opinion, it seems interesting to explore
wether the analysis performed in three dimensions is only due to the simplicity of 2 + 1
gravity, or it is generic to any dimension. The main purpose of this paper is to carry out the
correspondence mentioned above to higher dimensions by establishing a conformal mapping
between the pure radiation constraints determining the scalar sources in each gravitational
wave background.

The organization of the paper is the following. We first consider the problem of scalar
fields nonminimally coupled to a pp-wave background in arbitrary dimension. The resulting
pure radiation constraints are solved in full generality and it is shown that their integration
fixes uniquely the matter source without the explicit knowledge of the structural metric
function. In particular, there exists a unique self-interaction, depending on a single coupling
constant, allowing the scalar field to act as a source of the pp-wave. In the third section,
we reproduce the same analysis in the context of scalar fields nonminimally coupled to AdS
waves. The pure radiation constraints are again integrable and the AdS wave scalar source
is completely determined. In this case, the process singles out a unique self-interaction
potential depending on two coupling constants. In the fourth section of the paper, we
establish a conformal correspondence between the pure radiation constraints of both systems
assuming the scalar fields of both backgrounds are conformally related. In other words, this
means that starting from a pp-wave scalar field configuration one is able to generate the
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scalar field configuration supporting the AdS wave. In this correspondence, we emphasize
the problem of the mismatching of the coupling constants of the potentials, problem which
is only specific to higher dimensions. We provide a recipe which permits to obtain the exact
potential supporting the AdS wave, with its two coupling constants, starting from the pp-
wave one with its single coupling constant. In the last section, we summarize our results
and leave some open questions related to this work. Two Appendixes are included at the
end where the detailed higher-dimensional field equations on each background are explicitly
written.

II. PP-WAVES SUPPORTED BY NONMINIMALLY COUPLED SCALAR

FIELDS

In this first part, we are concerned with scalar field nonminimally coupled to a pp-wave
background in D dimensions defined by the line element

ds̄2 = −F̄ (u, xî)du2 − 2dudv + δîĵdxîdxĵ ,

= −F̄ (u, y, xi)du2 − 2dudv + dy2 + δijdxidxj , (3)

where the plane wave-fronts of the gravitational wave have coordinates xî = (y, xi) with
i = 1, . . . , D − 3, and its parallel rays are described by the null covariantly constant field
kµ∂µ = ∂v. The action we are concerned with is given by

S̄(ḡαβ, Φ̄) =

∫

dDx
√−ḡ

(

1

2κ
R̄ − 1

2
ḡαβ∇αΦ̄∇βΦ̄ − 1

2
ξR̄ Φ̄2 − Ū(Φ̄)

)

, (4)

where ξ is the parameter characterizing the nonminimal coupling to gravity of the scalar field
Φ̄, whose self-interaction potential is described by Ū(Φ̄). For later convenience we have used
the convention that all the bared quantities are those relatives to the pp-wave background.
The field equations obtained by varying the action with respect to the metric and the scalar
field read

Ḡαβ = κT̄αβ, (5)

and

�̄Φ̄ = ξR̄ Φ̄ +
dŪ(Φ̄)

dΦ̄
, (6)

respectively, where the energy-momentum tensor is given by

T̄αβ = ∇αΦ̄∇βΦ̄ − ḡαβ

(

1

2
ḡµν∇µΦ̄∇νΦ̄ + Ū(Φ̄)

)

+ ξ
(

ḡαβ�̄ − ∇̄α∇̄β + Ḡαβ

)

Φ̄2. (7)

In order to study these configurations we assume that the null Killing field kµ∂µ = ∂v is also

a symmetry of the scalar field, i.e. Φ̄ = Φ̄(u, xî). The independent Einstein equations on the
pp-wave background are given in Appendix A. As it was stressed in the introduction, the
structure of the Einstein tensor for the geometry (3) is sketched as

Ḡαβ ∝ kαkβ, (8)

which in the coordinates adapted to kµ means that the only nonvanishing component of the
Einstein tensor is the one along the retarded time Ḡuu. Hence, all the components of the
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energy-momentum tensor except Tuu must vanish by virtue of the Einstein equations, and
this is interpreted as the scalar field must behave like a pure radiation field [9]. As we shall
see below the integration of the resulting pure radiation constraints uniquely determines the
matter source. Finally, the remaining independent Einstein equation, i.e. the one along the
component uu (see Appendix A), allows to derive the structural metric function F̄ in the
expression (3).

The independent pure radiation constraints are given by the following combinations, as
can be noticed from Appendix (A),

T̄uî = 0, (9a)

T̄îĵ + δîĵT̄uv = 0, (9b)

δ îĵT̄îĵ + (D − 3)T̄uv = 0. (9c)

As it also occurs in three dimensions [12], it is useful to make the following redefinition of
the scalar field

Φ̄ =
1

σ̄2ξ/(1−4ξ)
, (10)

where we are considered all the possible values of the nonminimal coupling parameter except
ξ = 0 and ξ = 1/4. These two cases can also be studied but their analysis is not essential for
our main task. Using Eq. (A1) of Appendix A the first two equations (9a) and (9b) reduce
to

∂uîσ̄ = 0, (11a)

∂îĵσ̄ = 0, (11b)

which imply that the general solution is separable in all the coordinates and is additionally
linear in the planar coordinates of the wave-front

σ̄ = k̄îx
î + f̄(u) (12)

where the k̄î are D−2 arbitrary constants and f̄ is an arbitrary function of the retarded time.
Hence, the integration of the first two pure radiation constraints completely determines the
scalar field. Inserting the obtained expression into the remaining pure radiation constraint
(9c), the allowed potential is singled out as

Ū(Φ̄) =
2ξ2λ

(1 − 4ξ)2
Φ̄(1−2ξ)/ξ, (13)

where we have defined the coupling constant by

λ = δ îĵ k̄îk̄ĵ. (14)

The emergence of such potential is interesting by itself for various reasons. Firstly, for the
conformal coupling in D dimensions, ξ = ξD = (D − 2)/[4(D − 1)], the above potential
reduces to the only potential compatible with the conformal invariance in higher dimensions
Ū(Φ̄) ∝ Φ̄2D/(D−2). We stress from now that the potential (13) depends on a single coupling
constant λ expressed in terms of the D − 2 integration constants of the scalar field. The
solution of the pure radiation constraints also allows the existence of nontrivial free massless
configurations for λ = 0, as it can be noticed from Eqs. (14) and (12). In this case, the
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free scalar field depends only and arbitrarily on the retarded time. It is also interesting to
notice that for the particular value of the nonminimal parameter ξ = 1/2, the potential (13)
reduces to a positive constant and hence, the original problem is equivalent to considering
the Einstein equations with a positive effective cosmological constant in presence of a free
nonminimally coupled scalar field.

For later convenience, we record that some of the pure radiation constraints (11) can be
reexpressed compactly in terms of the scalar field and its allowed self-interaction potential
(13) as

∂α





∂yΦ̄
√

Ū
(

Φ̄
)



 = 0, (15)

which in addition empathizes that the expression between the parenthesis is a constant.
This condition can be interpreted as a sort of Bogomolnyi self-dual condition for the system.

In sum, we have seen that the integration of the pure radiation constraints have completely
determined the matter source. It is interesting to stress that this task have been achieved
without using the structural metric function F̄ . In other words, this means that the matter
source is only sensitive to the form of the metric and not to the specific structural metric
function. As we shall see below, this property is also present in the case of AdS waves.
Hence, in order to relate the matter sources of both backgrounds, it is not necessary to
derive the structural metric functions.

III. ADS WAVES SUPPORTED BY NONMINIMALLY COUPLED SCALAR

FIELDS

In this section, we are concerned with scalar fields nonminimally coupled to an AdS wave

ds2 =
l2

y2

[

−F (u, y, xi)du2 − 2dudv + dy2 + dxidxi
]

, (16)

where the wave fronts {u, v = const.} are now hyperboloids with curvature proportional to

−1/l2 and coordinates xî = (y, xi), i = 1, . . . , D − 3. The field equations are those arising
from the following action

S =

∫

dDx
√−g

(

1

2κ
(R + 2Λ) − 1

2
gαβ∇αΦ∇βΦ − 1

2
ξR Φ2 − U(Φ)

)

, (17)

where Λ = −(D−2)(D−1)/(2l2) is the negative cosmological constant, ξ is the nonminimal
coupling parameter, and U(Φ) is the self-interaction potential. The involved field equations
are the Einstein and the nonlinear Klein–Gordon equations

Gαβ + Λgαβ = κTαβ , (18)

�Φ = ξR Φ +
dU(Φ)

dΦ
, (19)

where the corresponding energy-momentum tensor is defined by

Tαβ = ∇αΦ∇βΦ − gαβ

(

1

2
gµν∇µΦ∇νΦ + U(Φ)

)

+ ξ (gαβ� −∇α∇β + Gαβ) Φ2. (20)
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We now see that the strategy used in the case of the pp-wave background can be exactly
reproduced here in order to determine the allowed matter source for an AdS wave back-
ground. The clue lies in the fact that the Einstein tensor for an AdS wave background has
the following structure

Gαβ + Λgαβ ∝ kαkβ, (21)

with kµ∂µ = ∂v, which implies that any self-gravitating source supporting the wave in the
presence of the negative cosmological constant must behave effectively as a pure radiation
field [9]. As a consequence, in the coordinates of metric (16) the only component of the
Einstein equations (18) with a nonvanishing left hand side is the uu one as it occurs in
the pp-wave background. The other Einstein equations reduce again to pure radiation
constraints.

We assume that the null Killing field kµ is also a symmetry of the scalar field which in
turn implies that the independent field equations on the AdS wave background reduce to
the ones given in Appendix B. As before, the pure radiation constraints are expressed as

Tuî = 0, (22a)

Tîĵ + Tuvδîĵ = 0, (22b)

δ îĵTîĵ + (D − 3)Tuv = 0. (22c)

We now consider the following redefinition for the scalar field

Φ =
1

σ2ξ/(1−4ξ)
, (23)

which presents the advantage that the pure radiation constraints (22a) and (22b), whose
explicit form can be found in the Eq. (B1) of Appendix B, are more simple to tackle

∂y (y∂uσ) = 0, (24a)

∂2
uiσ = 0, (24b)

∂y

(

y2∂yσ
)

= 0, (24c)

∂y (y∂iσ) = 0, (24d)

∂2
ijσ = 0. (24e)

The general solution of (24) is given by

σ(u, y, xi) =
l

y

[

kyy + kix
i + f(u)

]

, (25)

where ky and ki are D − 2 integration constants and f is a general function of the retarded
time. The remaining pure radiation constraint (22c) is the one that permits to obtain the
allowed potential. After a tedious but straightforward calculation we conclude that the only
self-interaction potential allowed by the system is given by

U(Φ) =
2ξΦ2

(1 − 4ξ)2

(

ξλ1Φ
(1−4ξ)/ξ − 8(D − 1)ξ(ξ − ξD)λ2Φ

(1−4ξ)/(2ξ)

+
4D(D − 1)

l2
(ξ − ξD)(ξ − ξD+1)

)

, (26)
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where ξD = (D − 2)/[4(D − 1)] is the conformal coupling in dimension D and the two
coupling constants of the potentials are defined by

λ1 = ky
2 + δijkikj, λ2 =

ky

l
. (27)

Once again, the emergence of such potential is intriguing for various reasons. In contrast with
the allowed potential in the pp-wave situation (13), the AdS wave potential (26) depends
on two coupling constants (27). This subtlety is not present in three dimensions [14] since
in this case ki = 0, and hence the coupling constants are related, i.e. λ2 =

√
λ1/l. This

remark will be of importance in the next section where a correspondence between the two
configurations previously analyzed will be presented. It is also interesting to note that for
the conformal value of the nonminimal coupling parameter, ξ = ξD, the expression (26)
also reduces to the conformally invariant potential as it occurs in the pp-wave case. In fact,
at the vanishing cosmological constant limit (l → ∞), we recover the potential permitted
by the pp-wave background (13). Finally, we also mention that this potential is exactly
the one arising in the context of scalar fields nonminimally coupled to special geometries
without inducing backreaction (the static BTZ black hole [15, 16], flat space [17, 18], and
the generalized (A)dS spacetimes [19]). All these examples share a common feature, namely
the existence of nontrivial solutions with a vanishing energy-momentum tensor called stealth
configurations.

IV. THE CORRESPONDENCE

In this section, we establish a correspondence between the two sets of pure radiations
constraints previously studied. The existence of a map between the involved sources was
first noticed in three dimension [14]. Here, we prove that this equivalence is not a mere
consequence of the apparent simplicity of 2 + 1 gravity and in fact, it can be extended
to higher dimensions. In a more precise set-up, assuming a conformal relation between the
scalar fields generating the two gravitational waves, we first put in relation the pure radiation
constraints that determine the scalar field solution in both systems. The remaining pure
radiation constraint is the one that fixes the allowed potential of each system. The relation
between these last two constraints is studied in the second part because of the subtlety due
to the mismatching of the coupling constants of both potentials.

The functional expressions for both scalar fields, on the one hand Eqs. (10) and (12),
and on the other hand Eqs. (23) and (25), suggest to consider a conformal relation between
them in the following manner

Φ =

(

l

y

)s

Φ̄, (28)

where the conformal weight s is not fixed ab initio. Using this relation we intent to write
the pure radiation constraints resulting from an AdS wave (22) in terms of the ones implied
by the existence of a pp-wave (9). Running down the components list of the first two sets
of pure radiation constraints (the ones that fix the scalar field dependence) we obtain the
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following relations

Tuy =

(

l

y

)2s (

T̄uy − [s(1 − 4ξ) + 2ξ]
∂uΦ̄

2

2y

)

, (29a)

Tui =

(

l

y

)2s

T̄ui, (29b)

Tyy + Tuv =

(

l

y

)2s [

T̄yy + T̄uv − [s(1 − 4ξ) + 2ξ] ys−1∂y

(

Φ̄2

ys

)]

, (29c)

Tyi =

(

l

y

)2s (

T̄yi − [s(1 − 4ξ) + 2ξ]
∂iΦ̄

2

2y

)

, (29d)

Tij + δijTuv =

(

l

y

)2s
(

T̄ij + δijT̄uv

)

. (29e)

It is clear from these relations that the particular value of the conformal weight

s = − 2ξ

1 − 4ξ
, (30)

seems to play a crucial role, but since it remains to connect the pure radiation constraints
(9c) and (22c), we prefer to keep the weight infixed for now. The possible relation between
these two remaining constraints is more subtle, since this would imply an interrelation among
the potentials (13) and (26). As it has been pointed out previously, on the pp-wave side
there is only one coupling constant λ, in contrast with the AdS wave case where two a
priori independent coupling constants λ1 and λ2 are present. Hence, in order to establish
the correspondence we need to provide a recipe for choosing the two coupling constants of
the AdS wave source starting from the pp-wave one. This problem does not appear in 2 + 1
dimensions where there is only one wave-front coordinate and only one related integration
constant, giving rise to a single coupling constant for both gravitational wave backgrounds
[14]. In order to compensate this mismatch, our first election is simple and consists of
choosing λ1 coinciding with the single coupling constant of the potential supporting the
pp-wave. The second election is inspired by the self-dual condition (15) which implies that
the quantity (∂yΦ̄)/Ū(Φ̄)1/2 is constant for the pp-wave configuration, and hence this allows
us to define the coupling constant λ2 as proportional to this constant. Using the following
two definitions for the coupling constants

λ1 = λ, (31a)

λ2 = −1

l

√

λ

2

∂yΦ̄
√

Ū
(

Φ̄
)

, (31b)

we conclude, after a tedious computation, that the remaining pure radiation constraints are
related as follows

δ îĵTîĵ + (D − 3)Tuv +
l2

y2
[U(Φ) − Vs(Φ, y)] =

(

l

y

)2s
(

δ îĵT̄îĵ + (D − 3)T̄uv

)

, (32)
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where the function Vs depends on the scalar field Φ and additionally on the wave-front
coordinate y by means of

Vs(Φ, y) =
λ1

λ
Ū(Φ)

(

l

y

)[s(4ξ−1)−2ξ]/ξ

+ [s + 2ξ(D − 1)]
λ2√
λ

Φ
√

2Ū(Φ)

(

l

y

)[s(4ξ−1)−2ξ]/(2ξ)

+
[s2 + 4(D − 1)ξs + (D − 2)(D − 1)ξ]

2l2
Φ2, (33)

where Ū(Φ) stands for the functional dependence of the pp-wave potential (13) evaluated
on the AdS wave scalar field.

We are now in position to derive some conclusions. Firstly, as it was previously men-
tioned it is clear from the relations (29) that the involved pure radiation constrains of both
gravitational wave backgrounds are conformally related only if one choose the conformal
weight (30). Secondly, for such weight the function Vs above becomes y-independent and
reduces precisely to the functional expression of the scalar potential supporting the AdS
wave (26). Hence, this process automatically select the indicated potentials as the only ones
allowing the conformal mapping between the pure radiation constraints! It is also inter-
esting to note that for the conformal coupling in D dimensions, ξ = ξD, the weight (30)
becomes s = (2−D)/2 which is precisely the conformal weight associated to the conformal
Klein–Gordon equation in D dimensions.

In summary, we have shown that the pure radiation constraints on a pp-wave and an AdS
wave are conformally related if one suppose a conformal relation (28) between the involved
scalar fields with a conformal weight (30), and additionally the respective potential (13) and
(26) are taken in each side using the definitions (31) for the coupling constants, i.e.

Tuî =

(

l

y

)−4ξ/(1−4ξ)

T̄uî, (34a)

Tîĵ + δîĵTuv =

(

l

y

)−4ξ/(1−4ξ)
(

T̄îĵ + δîĵT̄uv

)

, (34b)

δ îĵTîĵ + (D − 3)Tuv =

(

l

y

)−4ξ/(1−4ξ)
(

δ îĵT̄îĵ + (D − 3)T̄uv

)

. (34c)

A similar conclusion can be achieved by studying the wave equation for the scalar field.
Using the conformal weight (30) and the relations (31) between the coupling constants
of both potentials, a conformal relation between the Klein–Gordon equations can be also
achieved for any generic nonminimal coupling ξ,

�Φ − ξR Φ − dU(Φ)

dΦ
=

(

l

y

)2(2ξ−1)/(1−4ξ) (

�̄Φ̄ − ξR̄ Φ̄ − dŪ(Φ̄)

dΦ̄

)

. (35)

This relation is far from obvious since it usually only works in the case of the conformal
coupling and taking in both sides of the equation the unique potential that does not spoil the
conformal invariance. A fact which is straightforwardly recovered in the above expression
just taking ξ = ξD.

V. CONCLUSIONS

Here, we have been concerned with the pp-wave and the AdS wave backgrounds in arbi-
trary dimension. These spacetimes share in common that their coupling to a matter source



10

is accompanied by a strong restriction, namely the source field must behave like a pure
radiation field. The elaboration of this work through two concise examples in arbitrary
dimensions has opened a number of questions that we would like to comment.

In this paper, we have shown that the nonminimal coupling of scalar fields to these partic-
ular spacetimes can be realized consistently, and the most general scalar field configurations
consistent with the only symmetry of the problem have been derived. In this first result
there is an interesting contrast between the strong restriction imposed by the spacetimes
and the fact that the most general solution of an higher-dimensional problem with only one
symmetry can be obtained. Moreover, it is obvious form our study that not any matter
field can act as a source for these backgrounds. In view of this, it is legitimate to go into
thoroughly and ask what are the characteristics that a matter action must possess in order
to couple consistently with these peculiar spacetimes. For example, it is clear that since
the pp-wave and the AdS wave metrics possess a null Killing field together with the fact
that their Einstein tensors have the structure (2), automatically impose an on-shell traceless
condition on the energy-momentum tensor of the matter source.

In the analysis of the pure radiation constraints, we have put in evidence the analo-
gies existing between both backgrounds. Indeed, in each case, the same combinations of
the energy-momentum tensor components give rise to the independent pure radiation con-
straints. Moreover, these combinations uniquely fix the scalar field source, that means not
only the local expression for the scalar field but also the unique self-interactions allowing the
existence of the whole configuration. Furthermore, this derivation has been done without
the explicit knowledge of the structural metric function, suggesting that the source is only
sensitive to the general form of the metric. This property by itself is very intriguing and
unusual in gravitational physics due to the strongly coupled behavior inherent to the mat-
ter/gravity interaction; as it is well known matter acts as the source of spacetime curvature
generating the gravitational potential, but at the same time the spacetime geometry is the
arena where matter fields evolve, i.e. matter fields feel the fingerprints of the gravitational
field via its equation of motion. In the present cases the metric structural functions do
not participate in the Klein–Gordon equations. It is natural to ask first wether there exist
other examples of such behavior in the current literature. To our knowledge the only similar
examples occur for the so-called stealth configurations for which both matter and gravity
are completely decoupled [15, 16, 17, 19, 20]. The analogies with the stealth configurations
also concern the allowed potentials as it has been stressed in the present work. For all these
reasons, it would be desirable to have a better understanding of these curiosities from a
mathematical as well as physical point of view.

As said before, the pure radiation constraints impose and single out a unique form of the
potential for each background. In the pp-wave case, the selected self-interaction depends on
a single coupling constant and follows a power-law dependence on the scalar field. In the
AdS wave case, two coupling constants emerge from the integration of the pure radiation
constraints, each one associated to a different power-law term in the potential, additionally
a third contribution also appears consisting in a mass term whose mass scale is fixed by the
AdS radius. In spite of being different potentials, in the case of the conformal coupling in
D dimensions, both potentials reduce to the conformally invariant potential. It is appealing
that as the nonminimal coupling parameter takes the conformal value, the allowed potentials
precisely reduce to the conformally invariant one in D dimensions. This may be think as
if for an arbitrary value of the nonminimal coupling parameter, the system would enjoy a
symmetry higher than the conformal symmetry and reduces to this later as the nonminimal
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coupling parameter becomes the conformal one. The conformal relations established in the
previous section brings evidence in favor of this view. An interesting work will then consist
of studying the dynamical symmetries of the models we have considered in order to confirm
the existence or not of a higher symmetry including the conformal one.

In the last part, we have extended the analogies observed between the AdS wave and
the pp-wave sources by establishing a conformal correspondence between the pure radiation
constraints of each system. In some sense, this correspondence permits to derive the scalar
field configuration of the AdS wave background from the pp-wave one in a nontrivial way.
In this correspondence, the scalar fields are conformally related with a weight expressed
in terms of the nonminimal coupling parameter independently of the precise dimension.
For the conformal value of the nonminimal coupling, this weight precisely becomes the
conformal weight associated to the conformal Klein–Gordon equation. The pure radiation
constraints fixing the scalar field dependence are easily put in equivalence in contrast with
the radiation constraints that single out the self-interactions. Indeed, in this last case, there
is a mismatching between the coupling constants of the respective potentials. The additional
coupling constant in the AdS wave potential has been shown to be associated to a constant
arising from a self-dual condition naturally satisfied by the pp-wave scalar fields. It is far
from obvious that the self-gravitating matter sources generating each backgrounds are in
correspondence even if these backgrounds can be viewed as conformally related. One may
think that the correspondence established here is a sort of residual conformal symmetry that
has its origin on the on-shell traceless condition of the energy-momentum tensor, a property
usually associated to the conformal invariance of the source. Once again, it would be of
interest to understand the mathematical structures that are behind of the examples treated
in this work.
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APPENDIX A: FIELD EQUATIONS FOR HIGHER DIMENSIONAL PP-WAVES

The independent Einstein equations (18) for the energy-momentum (20) on the back-
ground of a D-dimensional pp-wave (3) are given by the following combination

0 = Ḡαβ − κT̄αβ + ḡαβ(Ḡuv − κT̄uv)

=

[

1

2
(1 − κξΦ̄2)△̂F̄ + κξ

(

∂2
uuΦ̄

2 − 1

2
δ îĵ∂îF̄ ∂ĵΦ̄

2

)

− κ(∂uΦ̄)2

]

δu
αδu

β

− 2κ
(

∂uΦ̄∂îΦ̄ − ξ∂2
uî

Φ̄2
)

δu
(αδ î

β) − κ
(

∂îΦ̄∂ĵΦ̄ − ξ∂2
îĵ
Φ̄2

)

δ î
αδĵ

β, (A1)
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and the trace

0 = ḡ îĵ(Ḡîĵ − κT̄îĵ) + (D − 3)(Ḡuv − κT̄uv) = κ

(

Ū(Φ̄) − 1

2
δ îĵ∂îΦ̄∂ĵΦ̄

)

, (A2)

where xî = (y, xi), i = 1, . . . , D− 3, and △̂ = δ îĵ∂î∂ĵ . It is straightforward to check that the
above equations reduce to its 2 + 1 dimensional versions solved in Ref. [12].

APPENDIX B: FIELD EQUATIONS FOR HIGHER DIMENSIONAL ADS WAVES

All the information following from Einstein equations (18) with energy-momentum (20)
on the background of a D-dimensional AdS wave (16) is encoded in the following combination

0 = Gαβ + Λgαβ − κTαβ +
y2

l2
gαβ(Guv + Λguv − κTuv)

=

[

1

2

l2

y2
(1 − κξΦ2)�F + κξ

(

∂2
uuΦ

2 − 1

2
δ îĵ∂îF∂ĵΦ

2

)

− κ(∂uΦ)2

]

δu
αδu

β

− 2κ

(

∂uΦ∂yΦ − ξ

y
∂y

(

y∂uΦ
2
)

)

δu
(αδy

β) − 2κ
(

∂uΦ∂iΦ − ξ∂2
uiΦ

2
)

δu
(αδi

β)

− κ

(

(∂yΦ)2 − ξ

y2
∂y

(

y2∂yΦ
2
)

)

δy
αδy

β − 2κ

(

∂yΦ∂iΦ − ξ

y
∂y

(

y∂iΦ
2
)

)

δy
(αδi

β)

− κ
(

∂iΦ∂jΦ − ξ∂2
ijΦ

2
)

δi
αδj

β, (B1)

and the trace

0 = g îĵ(Gîĵ + Λgîĵ − κTîĵ) + (D − 3)
y2

l2
(Guv + Λguv − κTuv)

= κ

(

U(Φ) + ξΛΦ2 + ξ(D − 1)
y

l2
∂yΦ

2 − 1

2

y2

l2
δ îĵ∂îΦ∂ĵΦ

)

, (B2)

where xî = (y, xi), i = 1, . . . , D − 3, Λ = −(D − 2)(D − 1)/(2l2), and

�F =
y2

l2

[

yD−2∂y

(

1

yD−2
∂yF

)

+ △F

]

, (B3)

with △ = δij∂i∂j . As before the above equations becomes the 2+1 dimensional ones studied
in Ref. [14].
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