DSpace About DSpace Software
 

DSpace Biblioteca Universidad de Talca (v1.5.2) >
Dirección de Investigación >
Artículos en publicaciones ISI - Universidad de Talca >

Please use this identifier to cite or link to this item: http://dspace.utalca.cl/handle/1950/10057

Title: On the boundedness of generalized Cesaro operators on Sobolev spaces
Authors: Lizama, C.
Miana, PJ.
Ponce, R.
Sanchez-Lajusticia, L.
Keywords: Cesaro operators
Sobolev spaces
Boundedness
Issue Date: 1-Nov-2014
Publisher: ACADEMIC PRESS INC ELSEVIER SCIENCE
Citation: JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 419(1): 373-394
Abstract: For beta > 0 and p >= 1, the generalized Cesaro operator l(beta)f(t) := beta/t(beta)integral(t)(0)(t - s)(beta-1) f(s)ds and its companion operator l beta* defined on Sobolev spaces J(p)((alpha))(t(alpha)) and Jp((alpha))(vertical bar t vertical bar(alpha)) (where alpha >= 0 is the fractional order of derivation and are embedded in L-p(R+) and L-p(R) respectively) are studied. We prove that if p > 1, then l(beta) and l(beta)* are bounded operators and commute on J(p)((alpha))(t(alpha)) and J(p)((alpha))(vertical bar t vertical bar(alpha)) . We calculate explicitly their spectra sigma(l(beta)) and sigma(l(beta)(*)) and their operator norms (which depend on p). For 1 < p <= 2, we prove that <(l(beta)(f))over cap> = l(beta)*((f) over cap) and <(l(beta)*(f))over cap> = l(beta)((f) over cap) where (f) over cap denotes the Fourier transform of a function f is an element of L-p (R). (C) 2014 Elsevier Inc. All rights reserved.
Description: Ponce, R (Ponce, Rodrigo)Univ Talca, Inst Matemat & Fis, Talca, Chile
URI: http://dspace.utalca.cl/handle/1950/10057
ISSN: 0022-247X
Appears in Collections:Artículos en publicaciones ISI - Universidad de Talca

Files in This Item:

File Description SizeFormat
TEXTO_COMPLETO.htmlDESCARGAR3.08 kBHTMLView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Valid XHTML 1.0! DSpace Software Copyright © 2002-2009  The DSpace Foundation - Feedback