DSpace About DSpace Software
 

DSpace Biblioteca Universidad de Talca (v1.5.2) >
Dirección de Investigación >
Artículos en publicaciones ISI - Universidad de Talca >

Please use this identifier to cite or link to this item: http://dspace.utalca.cl/handle/1950/10216

Title: Nonlinearly charged Lifshitz black holes for any exponent z > 1
Authors: Alvarez, A.
Ayon-Beato, E.
Gonzalez, HA.
Hassaine, M.
Keywords: Holography and condensed matter physics (AdS/CMT)
Gauge-gravity correspondence
Field Theories in Higher Dimensions
Black Holes
Issue Date: 9-Jun-2014
Publisher: SPRINGER
Citation: JOURNAL OF HIGH ENERGY PHYSICS 6
Abstract: Charged Lifshitz black holes for the Einstein-Proca-Maxwell system with a negative cosmological constant in arbitrary dimension D are known only if the dynamical critical exponent is fixed as z = 2(D - 2). In the present work, we show that these configurations can be extended to much more general charged black holes which in addition exist for any value of the dynamical exponent z > 1 by considering a nonlinear electrodynamics instead of the Maxwell theory. More precisely, we introduce a two-parametric nonlinear electrodynamics defined in the more general, but less known, so-called ( , P )-formalism and obtain a family of charged black hole solutions depending on two parameters. We also remark that the value of the dynamical exponent z = D - 2 turns out to be critical in the sense that it yields asymptotically Lifshitz black holes with logarithmic decay supported by a particular logarithmic electrodynamics. All these configurations include extremal Lifshitz black holes. Charged topological Lifshitz black holes are also shown to emerge by slightly generalizing the proposed electrodynamics.
Description: Univ Talca, Inst Matemat & Fis, Talca, Chile; Hassaine, M (Hassaine, Mokhtar)
URI: http://dspace.utalca.cl/handle/1950/10216
ISSN: 1029-8479
Appears in Collections:Artículos en publicaciones ISI - Universidad de Talca

Files in This Item:

File Description SizeFormat
TEXTO_COMPLETO.htmlDESCARGAR3.08 kBHTMLView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Valid XHTML 1.0! DSpace Software Copyright © 2002-2009  The DSpace Foundation - Feedback