DSpace About DSpace Software
 

DSpace Biblioteca Universidad de Talca (v1.5.2) >
Dirección de Investigación >
Artículos en publicaciones ISI - Universidad de Talca >

Please use this identifier to cite or link to this item: http://dspace.utalca.cl/handle/1950/1556

Title: Global stability in a regulated logistic growth model
Authors: Trofimchuk, E.
Trofimchuk, S.
Keywords: Schwarz derivative
global stability
delay differential equations
regulated logistic model
Issue Date: May-2005
Publisher: American Institute of Mathematical Sciences
Citation: Discrete and Continuous Dynamical Systems-Series B 5 (2): 461-468
Abstract: We investigate global stability of the regulated logistic growth model (RLC) n'(t) = rn(t)(1-n(t-h)/K-cu(t)), u'(t) = -au(t)+bn(t-h). It was proposed by Gopalsamy and Weng [1, 2] and studied recently in [4, 5, 6, 9]. Compared with the previous results, our stability condition is of different kind and has the asymptotical form. Namely, we prove that for the fixed parameters K and mu = bcK/a (which determine the levels of steady states in the delayed logistic equation n'(t) rn(t)(1 - n(t - h)/K) and in RLG) and for every hr < root 2 the regulated logistic growth model is globally stable if we take the dissipation parameter a sufficiently large. On the other hand, studying the local stability of the positive steady state, we observe the improvement of stability for the small values of a: in this case, the inequality rh < pi(1 + mu)/2 guaranties such a stability
Description: Trofimchuk, S. Instituto de Matemática y Física, Universidad de Talca, Casilla 747, Talca, Chile.
URI: http://dspace.utalca.cl/handle/1950/1556
ISSN: 1531-3492
Appears in Collections:Artículos en publicaciones ISI - Universidad de Talca

Files in This Item:

File Description SizeFormat
Free Full Text.htm2.43 kBHTMLView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Valid XHTML 1.0! DSpace Software Copyright © 2002-2009  The DSpace Foundation - Feedback