DSpace Biblioteca Universidad de Talca (v1.5.2) >
Dirección de Investigación >
Artículos en publicaciones ISI - Universidad de Talca >
Please use this identifier to cite or link to this item:
http://dspace.utalca.cl/handle/1950/1560
|
Title: | Scattering theory of discrete (pseudo) Laplacians on a Weyl chamber |
Authors: | Van Diejen, J.F. |
Keywords: | integrable systems orthogonal polynomials Macdonald polynomials root systems Q-Jacobi conjectures algebras |
Issue Date: | Apr-2005 |
Publisher: | Johns Hopkins University Press, Journals Publishing Division |
Citation: | American Journal of Mathematics 127 (2): 421-458 |
Abstract: | To a crystallographic root system we associate a system of multivariate orthogonal polynomials diagonalizing an integrable system of discrete pseudo Laplacians on the Weyl chamber. We develop the time-dependent scattering theory for these discrete pseudo Laplacians and determine the corresponding wave operators and scattering operators in closed form. As an application, we describe the scattering behavior of certain hyperbolic Ruijsenaars-Schneider type lattice Calogero-Moser models associated with the Macdonald polynomials. |
Description: | Van Diejen, J.F. (reprint author). Instituto de Matemática y Física, Universidad de Talca, Casilla 747, Talca, Chile. |
URI: | http://dspace.utalca.cl/handle/1950/1560 |
ISSN: | 0002-9327 |
Appears in Collections: | Artículos en publicaciones ISI - Universidad de Talca
|
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
|