DSpace Biblioteca Universidad de Talca (v1.5.2) >
Dirección de Investigación >
Artículos en publicaciones ISI - Universidad de Talca >
Please use this identifier to cite or link to this item:
http://dspace.utalca.cl/handle/1950/3335
|
Title: | Hermite's constant for quadratic number fields |
Authors: | Baeza, R. Coulangeon, R. Icaza, M.I. O'Ryan, M. |
Issue Date: | 2001 |
Publisher: | A K Peters Ltd. |
Citation: | Experimental Mathematics 10(4): 543-551 |
Abstract: | We develop a method to compute the Hermite-Humbert constants gamma(K,n) of a real quadratic number field K, the analogue of the classical Hermite constant gamma(n) when Q is replaced by a quadratic extension. In the case n = 2, the problem is equivalent to the determination of lowest points of fundamental domains in H-2 for the Hilbert modular group over K, that had been studied experimentally by H. Cohn. We establish the results he conjectured for the fields Q(root2), Q(root3) and Q(root5). The method relies on the characterization of extreme forms in terms of perfection and eutaxy given by the second author in an earlier paper. |
Description: | Baeza, R. (reprint author), Univ Talca, Inst Matemat & Fis, Casilla 721, Talca Chile. |
URI: | http://dspace.utalca.cl/handle/1950/3335 |
ISSN: | 1058-6458 |
Appears in Collections: | Artículos en publicaciones ISI - Universidad de Talca
|
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
|