DSpace Biblioteca Universidad de Talca (v1.5.2) >
Dirección de Investigación >
Artículos en publicaciones ISI - Universidad de Talca >
Please use this identifier to cite or link to this item:
http://dspace.utalca.cl/handle/1950/3835
|
Title: | The behavior of quadratic and differential forms under function field extensions in characteristic two |
Authors: | Baeza, R. Aravire, R. |
Keywords: | Quadratic forms,Differential forms,Bilinear forms,Witt-groups,Function fields,Generic splitting fields of quadratic forms,Degree of quadraticforms |
Issue Date: | 2003 |
Publisher: | Elsevier Science (USA) |
Citation: | Journal of Algebra 259 (2):361–414 |
Abstract: | Let F be a field of characteristic 2. Let ΩnF be the F-space of absolute differential forms over F. There is a homomorphism :ΩnF→ΩnF/dΩn−1F given by (x dx1/x1dxn/xn)=(x2−x) dx1/x1dxn/xn mod dΩFn−1. Let Hn+1(F)=Coker(). We study the behavior of Hn+1(F) under the function field F(φ)/F, where φ=b1,…,bn is an n-fold Pfister form and F(φ) is the function field of the quadric φ=0 over F. We show that . Using Kato's isomorphism of Hn+1(F) with the quotient InWq(F)/In+1Wq(F), where Wq(F) is the Witt group of quadratic forms over F and IW(F) is the maximal ideal of even-dimensional bilinear forms over F, we deduce from the above result the analogue in characteristic 2 of Knebusch's degree conjecture, i.e. InWq(F) is the set of all classes |
Description: | Baeza R. Instituto de Matemática y Física,Universidad de Talca,Casilla 747,Talca,Chile. |
URI: | http://dspace.utalca.cl/handle/1950/3835 |
ISSN: | 0021-8693 |
Appears in Collections: | Artículos en publicaciones ISI - Universidad de Talca
|
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
|