DSpace Biblioteca Universidad de Talca (v1.5.2) >
Dirección de Investigación >
Artículos en publicaciones ISI - Universidad de Talca >
Please use this identifier to cite or link to this item:
http://dspace.utalca.cl/handle/1950/4059
|
Title: | Positive heteroclinics and traveling waves for scalar population models with a single delay |
Authors: | Trofimchuk, S. Faria, T. |
Keywords: | Delay differential equations; Delay reaction–diffusion equations; Nicholson’s blowflies equation; Heteroclinic solution; Traveling waves |
Issue Date: | 2007 |
Publisher: | Elsevier Inc. |
Citation: | Applied Mathematics and Computation 185 (1):594-603 |
Abstract: | The existence of positive heteroclinic solutions is proven for a class of scalar population models with one discrete delay. Traveling wave solutions for scalar delayed reaction–diffusion equations are also obtained, as perturbations of heteroclinic solutions of the associated equation without diffusion. As an illustration, the results are applied to the Nicholson’s blowflies equation with diffusion in the case of p/δ > e, for which the nonlinearity is non-monotone |
Description: | Trofimchuk, S. Instituto de Matemática y Física, Universidad de Talca, Casilla 747, Talca, Chile |
URI: | http://dspace.utalca.cl/handle/1950/4059 |
ISSN: | 0096-3003 |
Appears in Collections: | Artículos en publicaciones ISI - Universidad de Talca
|
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
|