DSpace About DSpace Software
 

DSpace Biblioteca Universidad de Talca (v1.5.2) >
Dirección de Investigación >
Artículos en publicaciones ISI - Universidad de Talca >

Please use this identifier to cite or link to this item: http://dspace.utalca.cl/handle/1950/4114

Title: Global stability in discrete population models with delayed-density dependence
Authors: Liz, E.
Tkachenko, V.
Trofimchuk, S.
Keywords: Global stability; Population models; Conjecture of Levin and May; Yorke condition; Difference equations; Delay differential equations
Issue Date: 2006
Publisher: Elsevier Inc.
Citation: Mathematical Biosciences 199 (1): 26-37
Abstract: We address the global stability issue for some discrete population models with delayed-density dependence. Applying a new approach based on the concept of the generalized Yorke conditions, we establish several criteria for the convergence of all solutions to the unique positive steady state. Our results support the conjecture stated by Levin and May in 1976 affirming that the local asymptotic stability of the equilibrium of some delay difference equations (including Ricker’s and Pielou’s equations) implies its global stability. We also discuss the robustness of the obtained results with respect to perturbations of the model.
Description: Trofimchuk, S.Instituto de Matemática y Física, Universidad de Talca, Casilla 747, Talca, Chile
URI: http://dspace.utalca.cl/handle/1950/4114
ISSN: 0025-5564
Appears in Collections:Artículos en publicaciones ISI - Universidad de Talca

Files in This Item:

File Description SizeFormat
Full Text.htm2.87 kBHTMLView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Valid XHTML 1.0! DSpace Software Copyright © 2002-2009  The DSpace Foundation - Feedback