DSpace About DSpace Software
 

DSpace Biblioteca Universidad de Talca (v1.5.2) >
Dirección de Investigación >
Artículos en publicaciones ISI - Universidad de Talca >

Please use this identifier to cite or link to this item: http://dspace.utalca.cl/handle/1950/4121

Title: Lie-algebra expansions, Chern–Simons theories and the Einstein–Hilbert Lagrangian
Authors: Edelstein, J.D.
Hassaine, M.
Troncoso, R.
Zanelli, J.
Issue Date: 2006
Publisher: Elsevier B.V.
Citation: Physics Letters B 640 (5-6): 278-284
Abstract: Starting from gravity as a Chern–Simons action for the AdS algebra in five dimensions, it is possible to modify the theory through an expansion of the Lie algebra that leads to a system consisting of the Einstein–Hilbert action plus non-minimally coupled matter. The modified system is gauge invariant under the Poincaré group enlarged by an Abelian ideal. Although the resulting action naively looks like general relativity plus corrections due to matter sources, it is shown that the non-minimal couplings produce a radical departure from GR. Indeed, the dynamics is not continuously connected to the one obtained from Einstein–Hilbert action. In a matter-free configuration and in the torsionless sector, the field equations are too strong a restriction on the geometry as the metric must satisfy both the Einstein and pure Gauss–Bonnet equations. In particular, the five-dimensional Schwarzschild geometry fails to be a solution; however, configurations corresponding to a brane-world with positive cosmological constant on the worldsheet are admissible when one of the matter fields is switched on. These results can be extended to higher odd dimensions.
Description: Hassaine, M. Instituto de Matemática y Física, Universidad de Talca, Casilla 747, Talca, Chile.
URI: http://dspace.utalca.cl/handle/1950/4121
ISSN: 0370-2693
Appears in Collections:Artículos en publicaciones ISI - Universidad de Talca

Files in This Item:

File Description SizeFormat
Full Text.htm2.87 kBHTMLView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Valid XHTML 1.0! DSpace Software Copyright © 2002-2009  The DSpace Foundation - Feedback