DSpace Biblioteca Universidad de Talca (v1.5.2) >
Dirección de Investigación >
Artículos en publicaciones ISI - Universidad de Talca >
Please use this identifier to cite or link to this item:
http://dspace.utalca.cl/handle/1950/4320
|
Title: | Elliptic beta integrals and modular hypergeometric sums: An overview |
Authors: | Van Diejen, J.F. Spiridonov, V.P. |
Keywords: | Rational Functions; bailey transform; series; polynomials; formulas |
Issue Date: | 2002 |
Citation: | Rocky Mountain Journal of Mathematics 32 (2): 639-656 |
Abstract: | Recent results on elliptic generalizations of
various beta integrals are reviewed. Firstly, a single variable
Askey-Wilson type integral describing an elliptic extension
of the Nassrallah-Rahman integral is presented. Then
a multiple Selberg-type integral defining an elliptic extension
of the Macdonald-Morris constant term identities for nonreduced
root systems is described. The Frenkel-Turaevsu m and
its multivariable generalization, conjectured recently by Warnaar,
follow from these integrals through residue calculus. A
new elliptic Selberg-type integral, from which the previous one can be derived via a technique due to Gustafson, is defined.
Residue calculus applied to this integral yields an elliptic generalization
of the Denis-Gustafson sum a modular extension
of the Milne-type multiple basic hypergeometric sums. |
Description: | Van Diejen, J.F. Instituto de Matemática y Física, Universidad de Talca, Casilla 747, Talca, Chile. |
URI: | http://dspace.utalca.cl/handle/1950/4320 |
ISSN: | 0035-7596 |
Appears in Collections: | Artículos en publicaciones ISI - Universidad de Talca
|
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
|