DSpace About DSpace Software
 

DSpace Biblioteca Universidad de Talca (v1.5.2) >
Dirección de Investigación >
Artículos en publicaciones ISI - Universidad de Talca >

Please use this identifier to cite or link to this item: http://dspace.utalca.cl/handle/1950/4503

Title: Algebraic conditioning analysis of the incremental unknowns preconditioner
Authors: Garcia, S.
Keywords: Linear algebra; Finite differences; Incremental unknowns/hierarchical basis; Laplace operator; Poisson equation
Issue Date: 1998
Publisher: Elsevier Science Inc.
Citation: Applied Mathematical Modelling 22 (4-5): 351-366
Abstract: Abstract Incremental unknowns are efficient in the numerical solution of elliptic linear differential equations but no rigorous theoretical justification was available. Hereafter, we establish that the condition number of the incremental unknowns matrix associated to the Laplace operator is O(1/h02)O(( log h)2) where h0 is the mesh size of the coarsest grid and where h is the mesh size of the finest grid. Furthermore, if block diagonal scaling is used then the condition number of the preconditioned incremental unknowns matrix associated to the Laplace operator comes out to be O(( log h)2); last, we observe that block diagonal scaling by the Laplace operator (scaled by h02) on the coarsest grid and by 4I on the fine grids appears as an acceptable alternative.
Description: Garcia, S. Instituto de Matemáticas y Física, Universidad de Talca, Casilla 721, Talca, Chile
URI: http://dspace.utalca.cl/handle/1950/4503
ISSN: 0307-904X
Appears in Collections:Artículos en publicaciones ISI - Universidad de Talca

Files in This Item:

There are no files associated with this item.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Valid XHTML 1.0! DSpace Software Copyright © 2002-2009  The DSpace Foundation - Feedback