DSpace Biblioteca Universidad de Talca (v1.5.2) >
Dirección de Investigación >
Artículos en publicaciones ISI - Universidad de Talca >
Please use this identifier to cite or link to this item:
http://dspace.utalca.cl/handle/1950/4605
|
Title: | Modular Hypergeometric Residue Sums of Elliptic Selberg Integrals |
Authors: | Van Diejen, J.F. Spiridonov, V.P. |
Keywords: | hypergeometric sums; Selberg integrals; residue calculus; Jacobi forms |
Issue Date: | 2001 |
Publisher: | Springer Netherlands |
Citation: | Letters in Mathematical Physics 58 (3): 223-238 |
Abstract: | It is shown that the residue expansion of an elliptic Selberg integral gives rise to an integral representation for a multiple modular hypergeometric series. A conjectural evaluation formula for the integral then implies a closed summation formula for the series, generalizing both the multiple basic hypergeometric 87 sum of Milne-Gustafson type and the (one-dimensional) modular hypergeometric 87 sum of Frenkel and Turaev. Independently, the modular invariance ensures the asymptotic correctness of our multiple modular hypergeometric summation formula for low orders in a modular parameter. |
Description: | Van Diejen, J.F. Instituto de Matemática y Física, Universidad de Talca, Casilla 747, Talca, Chile. |
URI: | http://dspace.utalca.cl/handle/1950/4605 |
ISSN: | 0377-9017 |
Appears in Collections: | Artículos en publicaciones ISI - Universidad de Talca
|
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
|