DSpace Biblioteca Universidad de Talca (v1.5.2) >
Dirección de Investigación >
Artículos en publicaciones ISI - Universidad de Talca >
Please use this identifier to cite or link to this item:
http://dspace.utalca.cl/handle/1950/4899
|
Title: | Finite-dimensional orthogonality structures for hall-littlewood polynomials |
Authors: | Van Diejen, J.F. |
Keywords: | Symmetric functions; Orthogonal polynomials; Bethe Ansatz; Norm formulas |
Issue Date: | 2007 |
Publisher: | Springer Netherlands |
Citation: | Acta Applicandae Mathematicae 99(3):301-308 |
Abstract: | We present a finite-dimensional system of discrete orthogonality relations for the Hall-Littlewood polynomials. A compact determinantal formula for the weights of the discrete orthogonality measure is formulated in terms of a Gaudin-type conjecture for the normalization constants of a dual system of orthogonality relations. The correctness of our normalization conjecture has been checked in some special cases: for Hall-Littlewood polynomials up to four variables (i), for the reduction to Schur polynomials (ii), and in a continuum limit in which the Hall-Littlewood polynomials degenerate into the Bethe Ansatz eigenfunctions of the Schrödinger operator for identical Bose particles on the circle with pairwise delta-potential interactions (iii). |
Description: | J. F. van Diejen. Instituto de Matemática y Física, Universidad de Talca, Casilla 747 Talca, Chile |
URI: | http://dspace.utalca.cl/handle/1950/4899 |
ISSN: | 0167-8019 |
Appears in Collections: | Artículos en publicaciones ISI - Universidad de Talca
|
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
|