DSpace Biblioteca Universidad de Talca (v1.5.2) >
Dirección de Investigación >
Artículos en publicaciones ISI - Universidad de Talca >
Please use this identifier to cite or link to this item:
http://dspace.utalca.cl/handle/1950/7777
|
Title: | Finiteness results for regular definite ternary quadratic forms over Q(root 5) |
Authors: | Chan, W.K. Earnest, A.G. Icaza, M.I. Kim, J.Y. |
Keywords: | regular quadratic forms over Q(root 5) |
Issue Date: | 2007 |
Publisher: | World Scientific Publ Co. |
Citation: | International Journal of Number Theory 3(4):541-556 |
Abstract: | Let o be the ring of integers in a number field. An integral quadratic form over o is called regular if it represents all integers in o that are represented by its genus. In [13,14] Watson proved that there are only finitely many inequivalent positive definite primitive integral regular ternary quadratic forms over Z. In this paper, we generalize Watson's result to totally positive regular ternary quadratic forms over Z[1+root 5/2]. We also show that the same finiteness result holds for totally positive definite spinor regular ternary quadratic forms over Z[1+root 5/2], and thus extends the corresponding finiteness results for spinor regular quadratic forms over Z obtained in [ 1,3]. |
Description: | Chan, WK (reprint author), Wesleyan Univ, Dept Math & Comp Sci, Middletown, CT 06459 USA |
URI: | http://dspace.utalca.cl/handle/1950/7777 |
ISSN: | 1793-0421 |
Appears in Collections: | Artículos en publicaciones ISI - Universidad de Talca
|
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
|