DSpace Biblioteca Universidad de Talca (v1.5.2) >
Dirección de Investigación >
Artículos en publicaciones ISI - Universidad de Talca >
Please use this identifier to cite or link to this item:
http://dspace.utalca.cl/handle/1950/7778
|
Title: | Lenstra's constant and extreme forms in number fields |
Authors: | Coulangeon, R. Icaza, M.I. O'Ryan, M. |
Keywords: | Humbert forms extreme forms |
Issue Date: | 2007 |
Publisher: | A K Peters Ltd. |
Citation: | Experimental Mathematics 16(4): 455-462 |
Abstract: | In this paper we compute gamma(K,2) for K = Q(rho), where rho is the real root of the polynomial x(3) - x(2) + 1 = 0. We refine some techniques introduced in [Baeza et al. 01] to construct all possible sets of minimal vectors for perfect forms. These refinements include a relation between minimal vectors and the Lenstra constant. This construction gives rise to results that can be applied in several other cases. |
Description: | Coulangeon, R (reprint author), Univ Bordeaux 1, Inst Math Bordeaux, 351 Cours Liberat, F-334405 Talence, France |
URI: | http://dspace.utalca.cl/handle/1950/7778 |
ISSN: | 1058-6458 |
Appears in Collections: | Artículos en publicaciones ISI - Universidad de Talca
|
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
|