|
DSpace Biblioteca Universidad de Talca (v1.5.2) >
Dirección de Investigación >
Artículos en publicaciones ISI - Universidad de Talca >
Please use this identifier to cite or link to this item:
http://dspace.utalca.cl/handle/1950/8899
|
Title: | Nonlinear Equations with Infinitely many Derivatives |
Authors: | Gorka, P. Prado, H. Reyes, E.G. |
Issue Date: | 2011 |
Publisher: | COMPLEX ANALYSIS AND OPERATOR THEORY Volume: 5 Issue: 1 Pages: 313-323 DOI: 10.1007/s11785-009-0043-z Published: MAR 2011 |
Citation: | BIRKHAUSER VERLAG AG |
Abstract: | We study the generalized bosonic string equation
Delta e(-c) (Delta)phi = U(x, phi), c > 0
on Euclidean space R(n). First, we interpret the nonlocal operator Delta e(-c) (Delta) using entire vectors of Delta in L(2)(R(n)), and we show that if U(x, phi) = phi(x) + f (x), in which f is an element of L(2)(R(n)), then there exists a unique real-analytic solution to the Euclidean bosonic string in a Hilbert space H(c,) (infinity) (R(n)) we define precisely below. Second, we consider the case in which the potential U(x, phi) in the generalized bosonic string equation depends nonlinearly on phi, and we show that this equation admits real-analytic solutions in H(c,infinity)(R(n)) under some symmetry and growth assumptions on U. Finally, we show that the above given equation admits real-analytic solutions in H(c,infinity)(R(n)) if U(x, phi) is suitably near U(0)(x, phi) = phi, even if no symmetry assumptions are imposed. |
Description: | Gorka, P. Univ Talca, Inst Matemat & Fis, Talca, Chile |
URI: | http://dspace.utalca.cl/handle/1950/8899 |
ISSN: | 1661-8254 |
Appears in Collections: | Artículos en publicaciones ISI - Universidad de Talca
|
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
|