DSpace About DSpace Software
 

DSpace Biblioteca Universidad de Talca (v1.5.2) >
Dirección de Programas de Investigación y Asistencia Técnica (DIAT) >
Artículos en publicaciones ISI - Universidad de Talca >

Please use this identifier to cite or link to this item: http://dspace.utalca.cl/handle/1950/8912

Title: Genetic algorithm optimization in drug design QSAR: Bayesian-regularized genetic neural networks (BRGNN) and genetic algorithm-optimized support vectors machines (GA-SVM)
Authors: Fernandez, M.
Caballero, J.
Fernandez, L.
Sarai, A.
Keywords: Drug design
Enzyme inhibition
Feature selection
In silico modeling
QSAR
Review
SAR
Structure-activity relationships
Issue Date: Feb-2011
Publisher: SPRINGER, VAN GODEWIJCKSTRAAT
Citation: MOLECULAR DIVERSITY Volume: 15 Issue: 1 Special Issue: SI Pages: 269-289 DOI: 10.1007/s11030-010-9234-9
Abstract: Many articles in "in silico" drug design implemented genetic algorithm (GA) for feature selection, model optimization, conformational search, or docking studies. Some of these articles described GA applications to quantitative structure-activity relationships (QSAR) modeling in combination with regression and/or classification techniques. We reviewed the implementation of GA in drug design QSAR and specifically its performance in the optimization of robust mathematical models such as Bayesian-regularized artificial neural networks (BRANNs) and support vector machines (SVMs) on different drug design problems. Modeled data sets encompassed ADMET and solubility properties, cancer target inhibitors, acetylcholinesterase inhibitors, HIV-1 protease inhibitors, ion-channel and calcium entry blockers, and antiprotozoan compounds as well as protein classes, functional, and conformational stability data. The GA-optimized predictors were often more accurate and robust than previous published models on the same data sets and explained more than 65% of data variances in validation experiments. In addition, feature selection over large pools of molecular descriptors provided insights into the structural and atomic properties ruling ligand-target interactions.
Description: Caballero, J (Caballero, Julio). Univ Talca, Ctr Bioinformat & Simulac Mol, Talca, Chile
URI: http://dspace.utalca.cl/handle/1950/8912
ISSN: 1381-1991
Appears in Collections:Artículos en publicaciones ISI - Universidad de Talca

Files in This Item:

File Description SizeFormat
TEXTO COMPLETO.htm3.65 kBHTMLView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Valid XHTML 1.0! DSpace Software Copyright © 2002-2009  The DSpace Foundation - Feedback