DSpace About DSpace Software
 

DSpace Biblioteca Universidad de Talca (v1.5.2) >
Dirección de Investigación >
Artículos en publicaciones ISI - Universidad de Talca >

Please use this identifier to cite or link to this item: http://dspace.utalca.cl/handle/1950/9148

Title: An Extension to the Scale Mixture of Normals for Bayesian Small-Area Estimation
Other Titles: Una extensión a la mezcla de escala de normales para la estimación Bayesiana en pequeñas áreas
Authors: Torres-Aviles, F.J.
Icaza, G.
Arellano-Valle, R.B.
Keywords: Disease mapping
Markov random field
Hierarchical model
Incidence rate; Relative risk
Issue Date: Jun-2012
Publisher: UNIV NAC COLOMBIA, DEPT ESTADISTICA, FAC CIENCIAS, CARRETA 30 NO 45-03, BOGOTA DC, 00000, COLOMBIA
Citation: REVISTA COLOMBIANA DE ESTADISTICA Volume: 35 Issue: 2 Pages: 185-204
Abstract: This work considers distributions obtained as scale mixture of normal densities for correlated random variables, in the context of the Markov random field theory, which is applied in Bayesian spatial intrinsically autoregressive random effect models. Conditions are established in order to guarantee the posterior distribution existence when the random field is assumed as scale mixture of normal densities. Lung, trachea and bronchi cancer relative risks and childhood diabetes incidence in Chilean municipal districts are estimated to illustrate the proposed methods. Results are presented using appropriate thematic maps. Inference over unknown parameters is discussed and some extensions are proposed.
Description: Icaza, G (Icaza, Gloria). Univ Talca, Inst Matemat & Fis, Talca, Chile
URI: http://dspace.utalca.cl/handle/1950/9148
ISSN: 0120-1751
Appears in Collections:Artículos en publicaciones ISI - Universidad de Talca

Files in This Item:

File Description SizeFormat
Texto Completo.pdfACCESO LIBRE VIA SCIELO968.86 kBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Valid XHTML 1.0! DSpace Software Copyright © 2002-2009  The DSpace Foundation - Feedback