DSpace Biblioteca Universidad de Talca (v1.5.2) >
Dirección de Investigación >
Artículos en publicaciones ISI - Universidad de Talca >
Please use this identifier to cite or link to this item:
http://dspace.utalca.cl/handle/1950/9384
|
Title: | MAXIMAL REGULARITY FOR DEGENERATE DIFFERENTIAL EQUATIONS WITH INFINITE DELAY IN PERIODIC VECTOR-VALUED FUNCTION SPACES |
Authors: | Lizama, C. Ponce, R. |
Keywords: | differential equations with delay operator-valued Fourier multipliers R-boundedness UMD spaces Besov vector-valued spaces Lebesgue vector-valued spaces |
Issue Date: | Oct-2013 |
Publisher: | CAMBRIDGE UNIV PRESS, 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA |
Citation: | PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY Volumen: 56 Número: 3 Páginas: 853-871 DOI: 10.1017/S0013091513000606 |
Abstract: | Let A and M be closed linear operators defined on a complex Banach space X and let a is an element of L-1(R+) be a scalar kernel. We use operator-valued Fourier multipliers techniques to obtain necessary and sufficient conditions to guarantee the existence and uniqueness of periodic solutions to the equation
d/dt (Mu(t)) = Au(t) + integral(t)(-infinity) a(t - s)Au(s)ds + f(t), t > 0,
with initial condition Mu(0) = Mu(2 pi), solely in terms of spectral properties of the data. Our results are obtained in the scales of periodic Besov, Triebel-Lizorkin and Lebesgue vector-valued function spaces. |
Description: | Ponce, R (Ponce, Rodrigo)[ 2 ] Univ Talca, Inst Matemat & Fis, Talca, Chile |
URI: | http://dspace.utalca.cl/handle/1950/9384 |
ISSN: | 0013-0915 |
Appears in Collections: | Artículos en publicaciones ISI - Universidad de Talca
|
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
|