DSpace About DSpace Software
 

DSpace Biblioteca Universidad de Talca (v1.5.2) >
Dirección de Investigación >
Artículos en publicaciones ISI - Universidad de Talca >

Please use this identifier to cite or link to this item: http://dspace.utalca.cl/handle/1950/9384

Title: MAXIMAL REGULARITY FOR DEGENERATE DIFFERENTIAL EQUATIONS WITH INFINITE DELAY IN PERIODIC VECTOR-VALUED FUNCTION SPACES
Authors: Lizama, C.
Ponce, R.
Keywords: differential equations with delay
operator-valued Fourier multipliers
R-boundedness
UMD spaces
Besov vector-valued spaces
Lebesgue vector-valued spaces
Issue Date: Oct-2013
Publisher: CAMBRIDGE UNIV PRESS, 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA
Citation: PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY Volumen: 56 Número: 3 Páginas: 853-871 DOI: 10.1017/S0013091513000606
Abstract: Let A and M be closed linear operators defined on a complex Banach space X and let a is an element of L-1(R+) be a scalar kernel. We use operator-valued Fourier multipliers techniques to obtain necessary and sufficient conditions to guarantee the existence and uniqueness of periodic solutions to the equation d/dt (Mu(t)) = Au(t) + integral(t)(-infinity) a(t - s)Au(s)ds + f(t), t > 0, with initial condition Mu(0) = Mu(2 pi), solely in terms of spectral properties of the data. Our results are obtained in the scales of periodic Besov, Triebel-Lizorkin and Lebesgue vector-valued function spaces.
Description: Ponce, R (Ponce, Rodrigo)[ 2 ] Univ Talca, Inst Matemat & Fis, Talca, Chile
URI: http://dspace.utalca.cl/handle/1950/9384
ISSN: 0013-0915
Appears in Collections:Artículos en publicaciones ISI - Universidad de Talca

Files in This Item:

File Description SizeFormat
TEXTO_COMPLETO.htmlTEXTO COMPLETO3 kBHTMLView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Valid XHTML 1.0! DSpace Software Copyright © 2002-2009  The DSpace Foundation - Feedback